

cil, missusb, ddl and friends...

Alexey Filin,
OKA, IHEP, Protvino, September 29, 2011

Prologue

● The presentation describes some not presented
before software components used to
test/run/control OKA DAQ & trigger electronics,
decode stored data, monitor beam

Cil (1)
● Crate interface library (cil) was developed in C to simplify

access to read-out, front-end and trigger electronics

● There are 5 abstract classes:
● cil_actl (abstract controller)

● cil_abctl (abstract CAMAC/SUMMA branch ctl, inherits cil_actl)

● cil_amctl (abstract MISS ctl, inherits cil_actl)

● cil_ahiface (abstract host interface)

● cil_ariface (abstract read-out interface)

● And 9 real derived classes to access hardware:
● cil_bit3 (PCI host interface, VME ctl), cil_pq/cil_iq (PCI/ISA host

interface, Q-bus ctl)

● cil_v02 (VME device, SUMMA branch ctl), cil_cbd8210 (VME device,
CAMAC branch ctl), cil_le20 (SUMMA ctl, Q-bus ctl)

● cil_le51, cil_le83 (Q-bus device, MISS ctl)

● cil_mu (MISS USB read-out interface)

Cil (2)
● 2 classes to abstract access to registers in crate electronics

(can be mmaped or read/write accessed, depends on driver):
● cil_register16 – access to 16 bit registers

● cil_register32 – access to 32 bit registers

● Access to crate electronics is implemented with classes
described above and is transparent. Real classes derived from
the same parent are fully interchangeable (taking into account
hw compatibility):

● Any SUMMA module can be accessed with any branch controller

● Any MISS module can be accessed with any MISS controller

● Any MISS controller can be accessed with any Q-bus controller.

● Python bindings and aux modules are provided for the classes:
● BranchController, BranchModule, Hiface, MISSController, MISSModule,

Register16, Register32, Riface (abstract)

● Bit3, CBD8210, ISAQbus, LE51, LE83, PCIQbus, V02 (real)

Cil (3)
● Nearly all SUMMA/CAMAC/MISS electronics modules used by

OKA and managed with a computer interface are provided with
support python modules:

● CAMAC: Commutator, GAMSMotor, Generator, LEDGenerator, MOR,
UNISI

● SUMMA: D135, F133, IMT, LE57, LE75, LE90M, LE94, R8, TH, TL2_50

● MISS: LE71, LE85

● USB: MU

● Python interface speeds up significantly tests of crate
electronics in comparison with C interface. Python interpretator
can be used to operate with crate electronics interactively

● Scripts to work with crate electronics were developed with cil:
● Scripts to work with separate modules: generator_ctl.py, le71_ctl.py,

le83_ctl.py, le85_ctl.py, le85_ctl.py, le94_ctl.py, led_generator_ctl.py,
mor_ctl.py, mu_ctl.py

● Scripts to work with subsystems: qdc_ctl.sh, trig_ctl.sh

trigctl (1)

● A program to manage trigger electronics trigctl was written in
Python with cil and used successfully in 7 runs for 4 years:

● Web interface provides access to stored scalers, intensimeter, trigger
solutions, delays, thresholds with web-browser

● Intensity, spectrum (with FFT) and intensity distribution histogram from
trigctl are used by beam shifts to control beam parameters

● MySQL database is used to store history of control information

● All info is passed to DAQ readout process each spill with shared
memory and stored into files with real data for off-line analysis

● Directory tree used to store scalers, intensimeter, spectrum in files
should be replaced with database back-end. There were problems with
file system due to enormous number of files (~106)

● Trigctl should be ported to Qt4 (Qt3 is used now) to run it on Fedora 14

trigctl (2)

missusb

● LE94 uses CYPRESS EZ-USB SX2 high-speed USB interface
device (CY7C68001) to transfer data to front-end host with one
bulk-in endpoint

● Missusb provides:
● Synchronous (with read) data input

● Asynchronous (with ioctl) data input from some devices simultaneously
(work mode in DAQ)

● Run time configuration of device sync transfers (timeout, buffer size) and
async transfers (memory allocator type, chunk size, number of chunks)

● Open by one process only to prevent multi-process access to the same
device

● Thread safe device access (read/configuration)

● Linux device name with USB DeviceID to identify device and crates
attached to it. USB is a hot-plug bus, unique static device id is a must for
DAQ reconfiguration

Ddl (1)

● Basic structure of ddl is 5 level tree of decoders mapping given
configuration of DAQ hardware and software (levels are
ordered from tree root to leaves):

● Event builder host (superevent)

● Front-end host (event)

● Equipment

● Read-out module

● Front-end electronics module

● Configuration can be performed with hard-coding, configurator
with interface to Kurshetsov database and configurator with
interface to DAQ front-end database [to be done]

● Each event type (physics, LED, PED) is configured with
personal decoder tree

Ddl (2)

● Ddl is based on zero-copy approach (
http://en.wikipedia.org/wiki/Zero-copy):

● "Zero-copy" describes computer operations in which the CPU does not
perform the task of copying data from one memory area to another.

● Zero-copy protocols are especially important for high-speed networks in
which the capacity of a network link approaches or exceeds the CPU's
processing capacity. In such a case the CPU spends nearly all of its time
copying transferred data, and thus becomes a bottleneck which limits
the communication rate to below the link's capacity.

● Decoding is performed in two steps repeated recursively:
● Decoder processes data block and stores pointers to found header, hits,

trailer and error words (specific for each decoder, some can be absent)

● Decoder identifies subdecoders and passes data blocks to the
subdecoders for decoding

http://en.wikipedia.org/wiki/Zero-copy

Ddl (3)

● There are 5 abstract decoder classes:
● ddl_adec (base parent for all decoders)

● ddl_amod, ddl_arom, ddl_autorom, ddl_sdrrom

● And 19 real decoder classes:
● 3 upper levels: ddl_daq, ddl_host, ddl_equip

● Read-out modules: ddl_le83, ddl_le85, ddl_ledbufrom, ddl_pedbufrom,
ddl_rawbufrom,

● Front-end modules: ddl_le69, ddl_le71, ddl_le71led, ddl_le71_ped,
ddl_le76, ddl_le78, ddl_le79, ddl_le84, ddl_le84nt, ddl_le95, ddl_trigctl

● Each decoder contains mask of found errors and array of
pointers to words in decoded buffer where errors were found:

● Smart repairing of data for found errors can be implemented

● Format analyser for data tests and electronics development can be
implemented to simplify investigation of hex dumps

Dem (1)
● Decoding error monitor (dem) was developed to control

operation of DAQ electronics on-line and provide full error
statistics off-line. Dem relies deeply on ddl and influenced ddl
design. Dem provides:

● List of decoders sorted by number of errors, each record provides:

– Decoder id (DAQ name, host name, equipment id, read-out id, front-end id)

– Decoder type

– Absolute & relative percent of error events for given error severity

– Error severity, error description

● List of all decoding errors for each decoder each record provides:

– Number, absolute & relative percent of error events for each decoder error

● Size of data decoded by each decoder:

– Number, percent of events

– Accumulated, minimum, average, maximum data length

● Way to show/hide errors for any decoder (and event type) and its
decoder sub-tree

Dem (2)

Dem (3)

Dem (4)

Epilogue

● Some of described sw components could not
be developed without sw by other developers:
● VME device driver for Bit3 Model 617/618/620 by

Enomoto Sanshiro (KEK, Japan)
● PCI-Qbus driver by Oleg Solovianov (IHEP,

Protvino, Russia)
● Python binding generation: gccxml by Kitware, Inc.

and ctypeslib by Thomas Heller

● The presentation can be get by
http://www.oka.ihep.ru/Members/filin/files/cil_mi
ssusb_ddl_2011sep29.pdf/download

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

