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Abstract

The decay K− → π0e−ν is studied using in-flight decays detected with the ”ISTRA+”
spectrometer. About 920K events are collected for the analysis. The λ+ slope parameter of
the decay form-factor f+(t) in the linear approximation (average slope) is measured: λlin

+ =
0.02774±0.00047(stat) ±0.00032(syst). The quadratic contribution to the form-factor was
estimated to be λ

′

+ = 0.00084±0.00027(stat) ±0.00031(syst). The linear slope, which has
a meaning of df+(t)/dt|t=0 for this fit, is λ+ = 0.02324±0.00152(stat) ±0.00032(syst). The
limits on possible tensor and scalar couplings are derived: fT/f+(0) = −0.012±0.021(stat)
±0.011(syst), fS/f+(0) = −0.0037+0.0066

−0.0056(stat) ±0.0041(syst).
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1 Introduction

The decay K → eνπ (Ke3) provides unique information about the dynamics of the strong
interactions. It has been a testing ground for such theories as current algebra, PCAC, Chiral
Perturbation Theory(ChPT). The study of this decay has a particular interest in view of new
two-loop order (O(p6)) calculations for Kl3 decays in ChPT [1, 2].

The high-order ChPT calculations make a definite prediction for the quadratic term in the
vector (f+(t)) form-factor and link the scalar (f0(t)) form-factor linear and quadratic slopes to
the f+(0) corrections. In turn, f+(0) is known to be crucial for the |Vus| measurements. In fact,
the latest measurements do not report any visible non-linearity in the form-factors [3, 4, 5, 6].

In this paper we present a high-statistics measurement (∼ 919K events) of the Dalitz plot
density in this decay. The description of the experimental setup, trigger and reconstruction
procedure can be found in our previous paper [5].

2 Selection procedure

The current analysis is based on the high-statistics data collected during run in Winter 2001. In
total, 332M events were logged on tapes. This statistics is complemented by about 160M MC
events generated with Geant3 [7] Monte Carlo program. The MC generation includes a realistic
description of the setup with decay volume entrance windows, tracking chambers windows,
chambers gas mixtures, sense wires and cathode structures, Čerenkov counters mirrors and
gas, the shower generation in EM calorimeters, etc.

The events with one charged track identified as electron and two or three additional showers
in the electromagnetic calorimeter are selected for further processing.

It was observed, that the main background contribution (about 95% of the background
events) is related to the decay K− → π−π0, when the hadronic interaction of the charged
pion simulates the electromagnetic shower in the calorimeter. Following the method of angular
selection used in our analysis of the Kµ3 decay [6], we choose the angle between the beam
particle direction and the vector sum of momenta of the final state track and photons as the
variable to perform signal-background separation.

The expected distribution over this angle is shown in Fig.1 together with the real data. One
can observe a clear background peak at small values and a good agreement of the data and
Monte-Carlo. The cut value was selected in the region where the maximum of the function
EffSignal/EffBack. is reached.

After that, the momenta of the final state particles were refined with 2C K → eνπ0 kine-
matic fit. Only the convergence of the fit was required. The missing energy Eν = EK−Eµ−Eπ0

after 2C fit is shown in Fig.2. This variable should exhibit a strong peak at Eν ∼ 0 in the
presence of noticeable background contributions. The complete absence of any enhancement
at small values of the missing energy proofs the quality of the selection procedure.
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Θ*  (radians)

cut value

Figure 1: Angle between the beam track
and the vector sum of final state particles
momenta. The points with errors are data
and the solid histogram is MC. The shaded
area shows the background contribution.

Eν  (GeV)

Figure 2: Energy of the neutrino compared
with MC. The shaded area shows the
surviving background contribution.

The signal Monte-Carlo events for Figures 1 and 2 are weighted with the Ke3 matrix element
where we use λ+ = 0.0286 (fixed from our preliminary measurements [5]).

Finally, 919K events were selected. We estimate the surviving background contribution to
be around 2.1%.

3 Analysis

The most general Lorentz-invariant form of the matrix element for the K− → l−νπ0 decay is
[8]:

M =
GFVus

2
ū(pν)(1+γ5)[2mKfS−[(PK +Pπ)αf++(PK−Pπ)αf−]γα+i

2fT

mK

σαβP α
KP β

π ]v(pl) (1)

It consists of scalar, vector, and tensor terms. The f± form-factors are the functions of t =
(PK −Pπ)2. In the Standard Model (SM), the W-boson exchange leads to the pure vector term.
The scalar and/or tensor terms which are “induced” by EW radiative corrections are negligibly
small, i.e nonzero scalar or tensor form-factors would indicate the physics beyond the SM.

The term in the vector part, proportional to f−, is reduced (using the Dirac equation) to
the scalar form-factor. In the same way, the tensor term is reduced to a mixture of the scalar
and vector form-factors. The redefined vector (V) and scalar (S) terms, and the corresponding
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Dalitz plot density in the kaon rest frame (ρ(Eπ, El)) are [9]:

ρ(Eπ, El) ∼ A · |V |2 + B · Re(V ∗S) + C · |S|2 (2)

V = f+ + (ml/mK)fT

S = fS + (ml/2mK)f− +

(

1 +
m2

l

2m2
K

− 2El

mK

− Eπ

mK

)

fT

A = mK(2ElEν − mK∆Eπ) − m2
l (Eν −

1

4
∆Eπ)

B = mlmK(2Eν − ∆Eπ); Eν = mK − El − Eπ

C = m2
K∆Eπ; ∆Eπ = Emax

π − Eπ; Emax
π =

m2
K − m2

l + m2
π

2mK

With the selected number of events we can not neglect the V −S interference term proportional
to the electron mass. The term proportional to f− is neglected in our analysis.

For further analysis we assume a general quadratic dependence of f+ on t:

f+(t) = f+(0)
(

1 + λ+t/m2
π + λ

′

+t2/m4
π

)

. (3)

The procedure of the extraction of the form-factor parameters starts with the subdivision
of the Dalitz plot region y = 0.12 ÷ 0.92; z = 0.55 ÷ 1.075 (y = 2Ee/mK , z = 2Eπ/mK) into
100 × 100 bins.

The signal MC was generated with the constant matrix element and the amplitude-induced
weights should be calculated during the fit procedure. One can observe that the Dalitz-plot
density function ρ(y, z) in (2) can be presented in the factorisable form:

ρ(y, z) =
∑

α

Fα(λ+, λ
′

+, fS, fT ) · Kα(y, z), (4)

where Fα are simple bilinear functions of the form-factor parameters and Kα(y, z) are the
kinematic functions which are calculated from the MC-truth information. For each α, the sums
of Kα(y, z) over events are accumulated in the Dalitz plot bins (i,j) to which the MC events
fall after the reconstruction. Finally, every bin in the Dalitz plot gets weights Wα(i, j) and the
density function r(i, j) which enters into the fitting procedure is constructed:

r(i, j) =
∑

α

Fα(λ+, λ
′

+, fS, fT ) · Wα(i, j) (5)

This method allows one to avoid the systematic errors due to the “migration” of the events
over the Dalitz plot due to the finite experimental resolution and automatically takes into
account the efficiency of the reconstruction and selection procedures.

To take into account the finite number of MC events in the particular bin and strong
variation of the real data events over the Dalitz plot, we minimize a −L function defined as
[10]:

−L = 2
∑

j

nj ln

[

nj

rj

(

1 − 1

mj + 1

)]

+ 2
∑

j

(nj + mj + 1) ln





1 + rj

mj

1 + nj

mj+1



 , (6)
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where the sum runs over all populated bins, and nj , rj and mj are the number of data events,
expected events and generated Monte Carlo events respectively. For large mj Eq. (8) reduces
to the more familiar expression

−L =
∑

j

[2(rj − nj) + 2nj lnnj/rj]

The radiative corrections were taken into account by re-weighting every Monte-Carlo event,
using MC-truth information, according to the recent calculations in [11].

The minimization is performed by means of the “MINUIT” program [12]. The errors are
calculated by “MINOS” procedure of “MINUIT” at the level ∆L = 1, corresponding to 68%
coverage probability for 1 parameter.

4 Results

A fit of the Ke3 data with fS = fT = λ
′

+ = 0 gives λ+ = 0.02774 ± 0.00047. The total number
of bins is 6991 and χ2/ndf = 0.97. The quality of the fit is illustrated in figures 3 and 4 where
the projected variables y = 2Ee/mK and z = 2Eπ0/mK are presented.

Y = 2Ee/MK

Figure 3: Y distribution.
The points with errors are the real data

and the shaded area – signal MC.

Z = 2Eπ/MK

Figure 4: Z distribution.
The points with errors are the real data

and the shaded area – signal MC.

The Table 1 represents fits with possible nonlinear term in f+ (Eq. 3) as well as the fits
with tensor and scalar contributions (Eq. 1).

Every row of the Table 1 represents a particular fit where the parameters shown without er-
rors are fixed. To qualify the statistical significance of the particular fit, we also show the change
in the χ2 value obtained with respect to the fit without non-linear or anomalous contributions.
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The second row shows a fit where the nonlinearity is allowed in f+(t). One can observe
λ+ −λ′

+ (Fig.5) correlation that results in a significant λ+ errors enhancement and visible shift
of λ+ parameter.

λ+ λ
′

+ fT /f+(0) fS/f+(0) ∆χ2

0.02774 ± 0.00047 0. 0. 0. 0.

0.02324 ± 0.00152 0.00084 ± 0.00027 0. 0. -9.8

0.02774 ± 0.00047 0. −0.012 ± 0.021 0. -0.3

0.02771 ± 0.00047 0. 0. −0.0059+0.0089
−0.0054 -0.5

0.02324 ± 0.00152 0.00084 ± 0.00027 −0.012 ± 0.021 0. -9.9

0.02325 ± 0.00152 0.00084 ± 0.00027 0. −0.0037+0.0066
−0.0056 -9.9

Table 1. The Ke3 fits.

λ+

λ +/

Figure 5: 1σ and 2σ contours in the λ+ − λ
′

+ plane.

. We should consider the λ+ parameter in the linear approximation as a mean slope over all
the physical q2-region, while the true value of the linear slope (df+(t)/dt|t=0) should be taken
from the non-linear fit.
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We also perform model-independent one-dimensional (y) fits where the data in every of the
100 q2/m2

π bins were fitted independently. The resulting distribution is shown in Fig.6. The
normalization f+(0) = 1 is assumed. The visible non-linearity can be observed in Fig.7, where
the ratio f+(t)/f+(0)/(1 + λ+q2/m2

π) is presented. The parabolic curve represents the fit with
the quadratic non-linearity in the form-factor.

q2/m2
π

f(
t)

/f
(0

)

Figure 6: The value of f+(t)/f+(0) obtained
in the model-independent fits.

q2/m2
π

Figure 7: The value of
f+(t)/f+(0)/(1 + λ+q2/m2

π). The fit with
non-linear contribution is shown.

This non-linearity can not be explained by a possible scalar contribution (that also results
in the enhancement of the number of events at large values of q2). The row 4 of the Table
1 represents a search for the scalar term with the vector form-factor set to be linear. The
resulting value of fS/f+(0) is compatible with zero.

We also perform a model-independent fit to extract simultaneously f+(t) and fS(t). The
resulting distribution for the value fS(t)/f+(0) is shown in Fig.8. The value of the scalar
contribution is compatible with zero with strong enhancement of the errors at small values of
t. This enhancement is explained by the dependence of the scalar contributions (Eq. 2) on the
Dalitz variables. One can observe that the leading term |S|2 is proportional to t and vanishes
at t → 0.

The last row of the Table 1 represents a fit with both scalar contribution and the quadratic
term in the vector form-factor.

We also do not see any tensor contribution in our data (rows 3 and 5 in the Table 1).
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q2/m2
π

f S(
t)

/f
(0

)

Figure 8: The value of fS(t)/f+(0) obtained in the model-independent fit.

Different sources of systematics are investigated. We allow variations of the electron selection
cuts and angular cut. The Dalitz plot binning, signal and background MC variations are also
applied.

The systematic errors are summarized in the Table 2. We can conclude that the main
contribution into systematic error comes from the main selection cut variation and from the
limited amount of the background MC.

Source λ+ λ
′

+ fT /f+(0) fS/f+(0)

e− selection 0.00017 0.00013 0.005 0.0020

angular cut 0.00020 0.00021 0.006 0.0020

Dalitz plot binning 0.00004 0.00006 0.001 0.0005

Signal MC variation 0.00006 0.00004 0.002 0.0006

Backg. MC variation 0.00016 0.00018 0.008 0.0026

Total 0.00032 0.00031 0.011 0.0041

Table 2. The systematic error contributions.
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5 Summary and conclusions

The K−

e3 decay has been studied using in-flight decays of 25 GeV K− detected by the “ISTRA+”
magnetic spectrometer.

The λ+ parameter of the vector form-factor in the linear approximation (average slope) is
measured to be:

λlin
+ = 0.02774 ± 0.00047 (stat) ± 0.00032 (syst).

A visible non-linear contribution is observed for the first time :

λ
′

+ = 0.00084 ± 0.00027 (stat) ± 0.00031 (syst).

With the quadratic term in the vector form-factor the linear slope (which has a meaning of
df+(t)/dt|t=0) is determined to be:

λ+ = 0.02324 ± 0.00152 (stat) ± 0.00032 (syst).

The limits on possible tensor and scalar couplings are derived from the fit with quadratic vector
form-factor:

fT /f+(0) = −0.012 ± 0.021 (stat) ± 0.011 (syst);

fS/f+(0) = −0.0037+0.0066
−0.0056 (stat) ± 0.0041 (syst).

The value of the quadratic term in the vector form-factor is in a good agreement (within
the statistical errors) with the O(p6) ChPT predictions [1, 2].

The obtained limits on the scalar and tensor terms can be used to get limits on several
exotic models.

The leptoquark-induced amplitudes for Ke3 decay were considered in [13]. In this model the
relation between tensor and scalar terms is fixed: fT = −6.87fS. The fit of our data with this
constraint gives the following scalar contribution: fS/f+(0) = 0.0046+0.0042

−0.0067. This result can be
converted in the upper limit |fS/f+(0)| < 0.011 (90% C.L.). Using the expression in [13]:

fS

f+(0)
=

√
2

16GF |Vsu|
m2

K − m2
π

(ms − mu)mK

1

Λ2
LQ

, (7)

where ΛLQ is the ratio of leptoquark mass to the square of the Yukawa-like coupling, we get

ΛLQ > 2.55 TeV (90% C.L.)
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