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Abstract

Pion-nucleus bremsstrahlung offers a possibility of measuring the structure functions of pion-

Compton scattering from a study of the small-momentum-transfer region where the bremsstrahlung

reaction is dominated by the single-photon-exchange mechanism. The corresponding cross-section

distribution is characterized by a sharp peak at small momentum transfers. But there is also a

hadronic contribution which is smooth and constitutes an undesired background. In this commu-

nication the modification of the single-photon exchange amplitude by multiple-Coulomb scattering

is investigated as well as the Coulomb-nuclear interference term.
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I. INTRODUCTION

We shall in this paper add a final touch to the subject of hard bremsstrahlung in pion-

nucleus scattering in the Coulomb region. The reaction studied is

π− + A → π− + γ + A.

In the kinematic region of small momentum transfers to the nucleus the reaction is dominated

by the one-photon-exchange mechanism. We have previously derived expressions [1, 2] both

for the Coulomb contribution, i.e. radiation in conjunction with elastic pion-nucleus-Coulomb

scattering , and for the nuclear contribution, i.e. radiation in conjunction with elastic pion-

nucleus hadronic scattering. Also, detailed predictions for the COMPASS experiment [3]

at CERN have been made [4], based on the Coulomb contribution alone. The aim of the

COMPASS experiment is to investigate the electromagnetic structure functions of pion-

Compton scattering. We studied the sensitivity of pionic bremsstrahlung to details of the

structure functions by employing a meson-exchange model for the pion-Compton amplitudes

that in additon to the Born contributions contained contributions from the σ, ρ, and a1,

exchanges.

Aspects of the theory that need further investigation concern the nuclear background

contribution, and the interference between Coulomb and nuclear contributions. These as-

pects are investigated in the present paper. Also the form factor of the Coulomb amplitude,

due to multiple Coulomb scattering, is investigated.

This work extends previous theoretical studies by Gal’perin et al.[5] and Fäldt and Teng-

blad [1, 2, 4]. The results concerning the Coulomb-form factor may be important for the

interpretation of the data by Antipov et al.[6].

The kinematics of the pion-nucleus bremsstrahlung reaction is defined through

π−(p1) + A(p) → π−(p2) + γ(q2) + A(p′), (1)

and the kinematics of the related pion-Compton reaction through

π−(p1) + γ(q1) → π−(p2) + γ(q2), (2)

with q1 = p− p′.

Our analysis is carried for high energies and small transverse momenta, meaning small

compared with the longitudinal momenta. In addition the momentum transfer to the nucleus

must be in the Coulomb region, i.e. extremely small.
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The cross-section distribution is written as

dσ

d2q1⊥d
2q2⊥dx

=
1

32(2π)5E2ω2M2
A

|MC +MN |2 , (3)

where MC is the Coulomb amplitude and MN the nuclear amplitude. The parameter x is

defined as the ratio

x =
q2z
p1

=
ω2

E1
, (4)

so that e.g., E2ω2 = x(1 − x)E2
1 . In hadronic bremsstrahlung there is a fixed longitudinal-

momentum transfer to the nucleus which depends on x,

q1‖ = qmin =
m2

π

2E1

· x

1− x
. (5)

At high energies qmin is obviously exceedingly small.

The structure of the cross-section distribution is mainly determined by the one-photon-

exchange factor
q2
1⊥

(q2
1⊥ + q2min)

2
(6)

which vanishes when the transverse-momentum transfer q1⊥ to the nucleus vanishes. When

the momentum transfer to the nucleus, q1⊥, increases far beyond qmin we eventually come

to momentum transfers where the nuclear contribution dominates [1].
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II. THE COULOMB AMPLITUDE

The expression for the Coulomb amplitude in the one-photon-exchange approximation is

given in Eq. (23) of ref.[2]. It reads

M(B)
C =

8πiZMAeα

q2
1

4xE2

q2
2⊥ + x2m2

π

[

A(x,q2
2⊥)

(

q1⊥ − 2q2⊥
q2⊥ · q1⊥

q2
2⊥ + x2m2

π

)

+B(x,q2
2⊥)q1⊥

]

· ǫ2. (7)

The functions A(x,q2
2⊥) and B(x,q2

2⊥), which were there called Ã(x,q2
2⊥) and B̃(x,q2

2⊥),

are the pion-Compton-structure functions. Their analytic expressions in the one-meson-

exchange approximation are given in the same reference. In the Born approximation, i.e. for

point-like pions, the structure functions take the values A = 1 and B = 0.

As can be inferred from Eq. (7) the Coulomb amplitude can be factorized as

M(B)
C =

2Zα

q2
1⊥ + q2‖

g · q1, (8)

with the vector g in the impact parameter plane, so that g · q1 = g · q1⊥. This amplitude is

valid for a point-like nuclear-charge distribution. The factor multiplying g · q1 in Eq.(8) is

the π−-nucleus-Coulomb-scattering amplitude in the Born approximation.

The above expression can be improved by taking into account the finite extension of the

nuclear-charge distribution and the distortion of the pion trajectory due to Coulomb-multiple

scattering. The hadronic distortion is treated in the following section.

In order to simplify notation we drop the index on q1 and put q1 = q = (q⊥, q‖). Then,

observe that expression (8) can be written as

M(B)
C (q) =

2Zα

q2
⊥ + q2‖

g · q =
−1

2πi

∫

d3re−iq·rg ·∇VC(r), (9)

where VC(r) is the Coulomb-point-nucleus potential

VC(r) = −Zα

r
, (10)

and where g · r = g · b with r⊥ = b.

The Coulomb distortion along the pion trajectory is in the Glauber model taken into

consideration by replacing Eq.(9) by

MC(q) =
−1

2πi

∫

d3re−iq·rg ·∇VC(r) e
iχC(b), (11)

4



where χC(b) is the Coulomb phase function,

χC(b) =
−1

v

∫ ∞

−∞
dz VC(b, z) . (12)

This expression for the amplitude is equally valid for extended nuclear-charge distributions

provided the Coulomb potential is evaluated with the proper charge distribution [7].

We first investigate the case of point-like nuclear charge. The Coulomb potential is then

as in Eq.(10) and the corresponding Glauber expression for the Coulomb phase factor

eiχC(b) =
(

2a

b

)iη

(13)

where a is the cut-off radius in the Coulomb potential. For π−-nucleus scattering

η = 2Zα/v. (14)

The velocity v can in the following safely be put to unity. Thus, Eq.(9) recast to include

Coulomb scattering becomes

MC =
−Zα

2πi

∫

d3re−iq·r g · r
r3

(

2a

b

)iη

. (15)

Integration over the z-variable yields a modified Bessel function. Integration over the angle

of the vector q produces a factor g · q⊥. We extract this factor and introduce the notation

FC(q) for the remaining factor, which is an off-shell-Coulomb-scattering amplitude. Hence,

MC = g · q FC(q⊥, q‖) (16)

The Coulomb-scattering amplitude is an integral over impact parameter

FC(q) = 2Zα/q⊥

∫ ∞

0
dbJ1(q⊥b){q‖bK1(q‖b)}

(

2a

b

)iη

. (17)

It is convenient to split off the point-Coulomb factor, writing

FC(q) =
2Zα(aq)iηeiση

q2
hC(q) (18)

with η defined in Eq.(14) and

ση = 2 arg Γ(1− iη/2). (19)

The extracted phase factors in Eq.(18) are the same as in elastic Coulomb scattering, except

that now

q =
√

q2
⊥ + q2‖. (20)
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Nucleus z=1.0 z=0.5 z=0.0

C 1.0 0.998-i0.030 0.997-i0.044

Fe 1.0 0.963 -i0.125 0.943 -i0.179

Pb 1.0 0.717 -i 0.272 0.588-i0.352

TABLE I: Numerical values of the Coulomb form factor hC(z) with z = q2⊥/(q
2
⊥ + q2‖).

In high-energy-elastic scattering the longitudinal-momentum transfer q‖ vanishes. In that

case q of Eq.(18) is interpreted as q⊥.

The integration over impact parameter in Eq.(17) leads to a hypergeometric function.

After some manipulations a simple result for the form factor hC(q) emerges

hC(q) = q2/q⊥(aq)
−iηe−iση

∫ ∞

0
dbJ1(q⊥b){q‖bK1(q‖b)}

(

2a

b

)iη

= Γ(2− iη/2)Γ(1 + iη/2)F (iη/2, 1− iη/2; 2;
q2⊥

q2⊥ + q2‖
). (21)

There are three values of the momentum transfer where the value of hC(q) is both simple

and interesting;

hC(q⊥, q‖ = 0) = 1, (22)

hC(q⊥ = q‖) =
Γ(1− iη/2)Γ(1 + iη/2)

Γ(1 + iη/4)Γ(1
2
− iη/4)

√
π, (23)

hC(q⊥ = 0, q‖) = (1− iη/2)
πη/2

sinh(πη/2)
; (24)

corresponding to z = 1, 1
2
, and 0. The value in Eq.(22) applies to elastic scattering, and

bremsstrahlung when the transverse momentum transfer is considerably larger that the

longitudinal-minimum-momentum transfer. The value in Eq.(23) applies to bremsstrahlung

at the peak where q⊥ = q‖. The value in Eq.(24) applies to bremsstrahlung in the very

forward direction where q⊥ = 0. In Table I we give numerical values for three nuclei. In the

cross-section distribution it is |hC(z)|2 that enters.

The form factor hC(z) , which could reduce the cross section at the Coulomb peak by

as much as 50 %, has not always been included. The cross-section distributions in [4], e.g.,

are calculated in the Born approximation. In order to be valid in the very forward region

of q⊥ ≈ q‖ those distributions should be multiplied by |hC(z)|2. The analysis of the Dubna

experiment [6] was also done without explicitly mentioning this factor.
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FIG. 1: Plots of the Coulomb-form factor hc(z)= hC(z) of Eq.(21) for carbon and lead. The circles

mark points for values of z from 0 to 1.0, in steps of 0.1.

The above expressions for the Coulomb contribution to pionic bremsstrahlung are valid

for point-like nuclear-charge distribution. The expression for the amplitude MC was given

in Eq.(16) and for the form factor FC in Eq.(17). This amplitude is summarized by the

formula

MC = g · q FC(q⊥, q‖). (25)

The pion-nucleus-Coloumb-scattering amplitude differs slightly from the corresponding elas-

tic amplitude since off-shell effects have been included through q‖.

The finite extension of the nuclear-charge distribution can also be handled. We replace

the point-Coulomb potential of Eq.(10) by the Coulomb potential V u
C (r), obtained from the

extended-charge distribution. As a result Eq.(25) is replaced by

MC = g · q F u
C(q⊥, q‖), (26)

where F u
C(q⊥, q‖) is the Coulomb-scattering amplitude of the extended-charge distribution.

The Coulomb-scattering amplitude for an extended-charge distribution cannot be calcu-

lated analytically. Therefore we divide the calculation into two steps, writing

F u
C(q⊥, q‖) = F p

C(q⊥, q‖) + δF u
C(q⊥, q‖) (27)

δF u
C(q⊥, q‖) = F u

C(q⊥, q‖)− F p
C(q⊥, q‖), (28)

where F p
C is the point-like-form factor of Eq.(18). The advantage of this rearrangement is

that δF u
C(q⊥, q‖) is a smooth function of q⊥ and q‖ and easily calculated numerically, and
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may in our bremsstrahlung application be evaluated at q‖ = 0.

From expression (11) for the bremsstrahlung amplitude we conclude that

g · q δFC(q⊥, q‖) =
−1

2πi

∫

d3re−iq·r
[

g ·∇V u
C (r)e

iχu
C
(b) − g ·∇VC(r)e

iχC(b)
]

, (29)

where superscript u indicates potential and Coulomb phase of the the extended-charge dis-

tribution. We assume the nuclear charge to vanish outside a radius of Ru.

Rearrange the integrand as follows,

g · q δF u
C(q⊥, q‖) =

−1

2πi

∫

d3re−iq·r
[

g ·∇(V u
C (r)− VC(r))e

iχu
C
(b)

+g ·∇VC(r) (e
iχu

C
(b) − eiχC(b))

]

. (30)

Then, the first term of the integrand vanishes for r ≥ Ru, and since Ruq‖ ≪ 1 we conclude

that the dependence on q‖ is so weak it can be ignored. In the second term we integrate over

the z-variable and end up with a factor bq‖K1(bq‖). But the difference between the phase

factors vanishes identically for b ≥ Ru, so that everywhere bq‖ ≪ 1. Again it is permissable

to take the limit q‖ → 0.

The result of this deliberation is that in Eq.(29) we can put q‖ = 0 and get

δF u
C(q⊥, q‖) = iv

∫ Ru

0
db b2

J1(bq⊥)

bq⊥
∂b
[

eiχ
u
C
(b) − eiχC(b)

]

(31)

= −iv
∫ Ru

0
db bJ0(q⊥b)

[

eiχ
u
C
(b) − eiχC(b)

]

. (32)

The first version is the one best suited for numerical evaluation. The second version shows

explicitely that δF u
C is the difference between the Coulomb amplitudes for extended- and

point-charge distributions.

In Fig. 2 we compare the three functions F u
C , F

p
C , and δF u

C . We have chosen q‖ = 1.0

MeV/c, a longitudinal-momentum transfer typical for the COMPASS experiment [3]. This

number is so small that the position of the peak, at q⊥ = q‖, cannot be seen in the figure

where the curves plotted start at q⊥ = 10 MeV/c. As is evident, the point-like form factor

is a good approximation to the uniform form factor up to about q2⊥ = 0.001 (GeV/c)2.

We end this section by remarking that the Coulomb form factor discussed above is also

encountered in ordinary Coulomb production

a + A → a⋆ + A,
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FIG. 2: Plots of the squared Coulomb form factors for q‖ = 1.0 MeV/c. The dashed curve

corresponds the point-like form factor F p
C(q⊥, q‖) of Eq.(18), the starred curve to the difference

form factor δF u
C (q⊥, q‖) of Eq.(32), and the solid line to their sum, the Coulomb form factor

F u
C(q⊥, q‖) of Eq.(28). The unit for qt2 = q2

⊥ is (GeV/c)2.

where the longitudinal-momentum transfer is defined as

q‖ = (m2
a⋆ −m2

a)/(2k), (33)

with k the momentum of the incident particle a. In Refs [8, 9], and similar applications, the

form factor is calculated numerically, but it is of course valuable to have an analytic expres-

sion for the point-like case. In many applications the dependence on q‖ is very important,

in contrast to the high-energy bremsstrahlung case discussed here.
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III. THE NUCLEAR AMPLITUDE

It is important to have the correct phase between Coulomb and nuclear contributions.

This point is treated in detail in Ref.[1]. Suppose the incident pion radiates a photon

before scattering. Then the nuclear scattering is of course the compounded amplitude of

Coulomb and nuclear scatterings. In Eq.(7) the contributions from radiation from external

legs are summarized by the Born approximation to the pion structure functions, A = 1 and

B = 0, changing g into g0 in Eq.(8). We want to extend this contribution by adding the

nuclear scattering. To this end we simply replace the Coulomb potential VC(r) by the sum

VC(r) + VN(r). As for the nuclear potential we assume the hadronic interaction between

pion and nucleus to be the same for incident and emerging pions, even though their energies

may be quite different. This is equivalent to saying that, within the Glauber model, we

assume the pion-nucleon-cross section to be energy independent. This assumption can of

course be relaxed.

The compounded nuclear and Coulomb amplitude corresponding to Eq.(9) thus reads

M(q) =
−i

2π

∫

d3x e−iq·x g0 · ∇ (VC(r) + VN(r)) e
i(χC(b)+χN (b)). (34)

The momentum transfer q is three-dimensional and the distortion includes both Coulomb

and hadronic distortion. The relation between potentials and phase-shift functions is defined

in Eq.(12).

The integrand of Eq.(34) can be rearranged to read

g0 · ∇VC(x)e
iχC(b) + g0 · ∇VN(x)e

i(χC(b)+χN (b)) − g0 · ∇VC(x)e
iχC(b)(1− eiχN (b)). (35)

The three terms are quite different in nature. The integrand of the first term extends over

all of space, since the Coulomb potential does. The integrand of the second term is non-zero

only inside the nucleus, since only there is the nuclear potential non-vanishing. Also the

integrand of the third term vanishes outside the nucleus, since the factor (1− eiχN (b)) there

does.

The first term of Eq.(35) describes the Coulomb contribution, for a general charge dis-

tribution. In the second and third terms we can neglect the functional dependence on the

longitudinal momentum transfer, since q‖ is fixed and so small that Ruq‖ ≪ 1 for all nuclei.

The nuclear contribution to the bremsstrahlung amplitude, i.e. the second and third terms
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of Eq.(35), can be written as

MN(q) = g0 · q FN (q⊥), (36)

FN (q⊥) =
iv

2π

∫

d2b e−iq⊥·beiχC(b)
[

1− eiχN (b)
]

. (37)

The factor FN(q⊥) is simply the elastic pion-nucleus scattering amplitude divided by the

energy. It is energy independent since we assumed energy independent pion-nucleus inter-

actions.
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FIG. 3: Plots of the squared form factors. The dashed curve corresponds the uniform-Coulomb-

form factor F u
C(q) of Eq.(28), the starred curve to the nuclear-form factor FN (q) of Eq.(37), and

the solid line to their sum. The unit for qt2 = q2⊥ is (GeV/c)2.

In Fig. 3 we have plotted what essentially amounts to elastic pion-nucleus cross-section

distributions. The dashed lines represent Coulomb scattering, the starred lines nuclear

scattering, and the solid lines their sum. In all terms we have neglected the longitudinal-

momentum transfer, being so incredibly small on the scale of momenta plotted. For trans-

verse momentum transfers q2⊥ ≥ 0.002 (GeV/c)2 the hadronic contribution dominates the

Coulomb contribution.
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IV. THE POLARIZABILITY AMPLITUDE

Now, we have the complete amplitude for point-like pions. But the aim is to incorporate

the pion polarizabilities, which are represented by the vector g − g0 in the one-photon-

exchange matrix element of Eq.(8). Including Coulomb and hadronic distortions gives,

instead of Eq.(11), the polarizability amplitude

MP (q) =
−1

2πi

∫

d3re−iq·r(g − g0) ·∇VC(r) e
i(χC(b)+χN (b)). (38)

Following our welltrodden path we rewrite the distortion factor as

ei(χC(b)+χN (b)) = eiχC(b) − eiχC(b)(1− eiχN (b)). (39)

The first term in this decomposition yields upon integration the Coulomb scattering am-

plitude FC(q). The second term vanishes for impact parameters b ≥ Ru, and leads to a

smooth term, as discussed above, where we can take the limit q‖ → 0. Our result for the

polarizability contribution to the bremsstrahlung amplitude is therefore

MP (q) = (g − g0) · qFP (q), (40)

FP (q) = F u
C(q) + δFP (q⊥), (41)
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FIG. 4: Plots of the squared form factors. The dashed curve corresponds the uniform-Coulomb-

form factor F u
C(q) of Eq.(28), the starred curve to the hadronic-distortion-form factor δFP (q⊥) of

Eq.(42), and the solid line to their sum. The unit for qt2 = q2⊥ is (GeV/c)2.

12



with the hadronic contribution

δFP (q⊥) = iv
∫ Ru

0
db b2

J1(bq1⊥)

bq1⊥

[

∂be
iχu

C
(b)
] (

1− eiχN (b)
)

. (42)

This amplitude is a smooth function of q⊥. The fact that the hadronic distortion effects are

quite different for the Born and the polarizability amplitudes was raised already in Ref.[1].

In Fig. 4 we graph the squared polarization-form factors. The dashed curve represents the

Coulomb-scattering-form factor, the starred curve the hadronic-distortion-form factor, and

the solid curve their sum. We see that hadronic effects are much weaker for the Compton

polarizability amplitude than for the Compton Born amplitude, a conclusion that should

be evident from expression (42), being proportional to the electromagnetic coupling as it is.

Another conclusion that can be drawn from Fig. 4 is that the strength of the polarizabil-

ity amplitude compared with that of the Born amplitude diminishes when the transverse

momentum transfer moves into the region q2⊥ ≥ 0.002 (GeV/c)2.
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V. BREMSSTRAHLUNG CROSS-SECTION DISTRIBUTION

The complete pion-nucleus bremsstrahlung amplitude has a simple structure

M = g0 · q1⊥ FC(q1) + (g − g0) · q1⊥ FP (q1) + g0 · q1⊥ FN(q1⊥), (43)

where FC is the off-shell pion-nucleus Coulomb scattering amplitude, FN the on-shell pion-

nucleus hadronic scattering amplitude, and FP a mixed amplitude appropriate for the polar-

izability contribution. Moreover, FP is essentially equal to FC . The fact that the Coulomb

amplitude is off-shell is only important in the region of the Coulomb peak, where q1⊥ is of

a size similar to the constant q1‖ = qmin.

It is straightforward to calculate the cross-section distribution from Eq.(43). However, in

practice the polarizability contributions are small, and in the expressions below it is often

sufficient to keep the corresponding linear terms. After summation over the polarization

directions of the final state photon we get for the cross-section distribution of Eq.(3)

dσ

d2q1⊥d
2q2⊥dx

=
α q2

1⊥

π2m4
π

(

1− x

x3

)(

x2m2
π

q2
2⊥ + x2m2

π

)2 (

K1 +K2 +K3

)

, (44)

where K1 is the Coulomb-nuclear contribution for point-like pions

K1 = |FC(q1) + FN (q1)|2
(

1− µ2 4x2m2
πq

2
2⊥

(x2m2
π + q2

2⊥)
2

)

, (45)

K2 the contributions linear in the pion-polarizability functions

K2 = 2ℜ
[

(F ⋆
C(q1) + F ⋆

N (q1))FP (q1)

][

C(x,q2
2⊥)

(

1− µ2 4x2m2
πq

2
2⊥

(x2m2
π + q2

2⊥)
2

)

+B(x,q2
2⊥)

(

1− µ2 2q2
2⊥

x2m2
π + q2

2⊥

)]

, (46)

and finally, K3 the contributions quadratic in the pion-polarizability functions

K3 = |FP (q1)|2
[

∣

∣

∣C(x,q2
2⊥)

∣

∣

∣

2
(

1− µ2 4x2m2
πq

2
2⊥

(x2m2
π + q2

2⊥)
2

)

+
∣

∣

∣B(x,q2
2⊥)

∣

∣

∣

2
(47)

+2ℜ
(

C(x,q2
2⊥)B

⋆(x,q2
2⊥)

)

(

1− µ2 2q2
2⊥

x2m2
π + q2

2⊥

)]

, (48)

where, in order to shorten the expressions, we have introduced

A(x,q2
2⊥) = 1 + C(x,q2

2⊥). (49)

The parameter µ is defined as µ = q̂1⊥ · q̂2⊥. On the right hand sides of the above formulae

we may in most applications replace µ2 by its average 1
2
.
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The dominant contribution to the cross section Eq.(44) comes from the point-like-pion

approximation, i.e. the contribution proportional to K1 of Eq.(45). The polarizbility contri-

butions are contained in K2 and K3. Experiments are aimed at measuring the contribution

proportional to K2, which is linear in the polarizabilities. The relative nuclear-form factor

between the K2 and K1 contributions is

R(q1) =
FP (q1)

FC(q1) + FN(q1)
, (50)

with the polarizability-form factor FP (q1) as defined in Eq.(41), and with q1 the momentum

transfer to the nucleus. When hadronic interactions of the pions are neglected, the ratio

R(q1) becomes one. In Fig. 5 we plot this ratio as a function of q2
1⊥ in the interval 0 ≤

q2
1⊥ ≤ 0.002 (GeV/c)2.
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FIG. 5: Plots of the ratio R(q1) of the form factors for the linear polarizability cross-section

contribution and the point-like-pion cross-section contribution, of Eq.(50). The circles represent

the ratios for q2
1⊥ in the interval 0 ≤ q21⊥ ≤ 0.002 (GeV/c)2 in steps of 0.0002 (GeV/c)2. The value

of R(q1) is one at q21⊥ = 0. The unit for q2⊥ is (GeV/c)2.

In Fig. 5 we have limited the region of q2
1⊥, since we know from the graphs of the previous

sections that for q2
1⊥ ≥ 0.002 (GeV/c)2 the contributions from the hadronic interactions

of the pions play a dominant role. Of course, our model is valid also in this case, but

experimenters prefer to stay in the region where the description is simple, meaning R(q1) =

1. From Fig. 5 we conclude that if this is desired we must further restrict the momentum

transfer to the nucleus. For Compton masses in the threshold region, sufficiently below

15



the ρ-meson mass, the polarizability functions C(x,q2
2⊥) and B(x,q2

2⊥) of Eq.(46) are real-

valued functions. Therefore, in the threshold region only the real part of R(q1) matters and

limiting ourselves to q2
1⊥ ≤ 0.001 (GeV/c)2, it is reasonable to set R(q1) ≈ 1. In the general

case, however, the more detailed model developed here must be applied.
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VI. SUMMARY

The pion-Compton scattering amplitude is near threshold fixed by Born terms involving

pion-exchange diagrams (Thompson scattering). At higher energies structure dependent

terms enter, labeled electric and magnetic polarizabilities (Rayleigh scattering). Those terms

can be modelled as σ-, ρ-, and a1-exchange contributions.

Pion-nucleus bremsstrahlung is closely related to pion-Compton scattering. At small mo-

mentum transfers to the nucleus the bremsstrahlung reaction is dominated by single-photon

exchange between the pion and the nucleus. As a consequence, the bremsstrahlung ampli-

tude becomes proportional to the pion-Compton scattering amplitude, the initial photon of

the Compton scattering being the virtual photon the pion is exchanging with the nucleus.

For heavy nuclei multiple-photon exchange becomes important. But its sole effect is to

introduce the well-known Coulomb phase factor. In the bremsstrahlung reaction the phase

is slightly different from the one in elastic Coulomb scattering, since in bremsstrahlung there

is a fixed longitudinal momentum transfer to the nucleus, qmin. A second effect produced

by the longitudinal momentum transfer is the appearance of a new form factor. An analytic

form for this form factor is given, for the first time. It is important for heavy nuclei when

the transverse momentum transfer to the nucleus is similar in magnitude to qmin.

However, pionic bremsstrahlung can also be accompanied by pion-nucleus hadronic scat-

tering. The importance of this contribution increases as the transverse momentum transfer

increases, exactly as in elastic scattering. It affects both Born and polarizability parts of

the Compton amplitudes. The Born term becomes, essentially, multiplied by the sum of

elastic Coulomb and hadronic pion-nucleus scattering amplitudes. For the polarizability

terms there is a corresponding sum, but whereas the Coulomb amplitude is the same, the

hadronic one is different and substantially weaker.

Numerical estimates of the various contributions are presented. The outcome is that if one

is interested in extracting polarizability contributions, it is advantageous to restrict oneself

to momentum transfers q2⊥ ≤ 0.001 (GeV/c)2, since there the ratio between polarizability

and Born contributions remains essentially the same as in free pion Compton scattering.

Increasing the momentum transfer means increasing the importance of hadronic scattering.

The ratio then changes in an important way, and varies with momentum transfer. Pushing

into the momentum transfers region q2⊥ ≥ 0.002 (GeV/c)2 we come into a region where
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hadronic scattering dominates, and where in addition the contribution from the polarizability

terms diminishes.
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VIII. APPENDIX

In this Appendix we explain how we have calculated the Coulomb and nuclear amplitudes.

It is then important to remember that we need the amplitudes only for small momentum

transfers, meaning that the structure of the nuclear surface region will not be important.

Hence, we choose uniform nuclear charge and matter distributions and with the same radii,

Ru = 1.1A1/3 fm. More sophisticated calculations are straightforward but also more time

consuming.

We start with the Coulomb amplitude. The Coulomb phase contains a cut-off a that

should go to infinity. In this limit the cut-off enters as a phase factor common to both

Coulomb and nuclear amplitudes. The value of a is therefore immaterial and we may simply

replace 2a by Ru. We also put v = 1.

The Coulomb-phase function for a uniform-charge distribution is [11]

χu
C(b) = 2Zα ln(Ru/b), b > Ru

= 2Zα

[

(

1− b2/R2
u

)1/2
+

1

3

(

1− b2/R2
u

)3/2

− ln
(

1 +
√

1− b2/R2
u

)

]

, b < Ru. (51)

We shall also need the derivatives

b∂bχ
u
C(b) = −2Zα, b > Ru

= −2Zα

[

1−
(

1− b2/R2
u

)3/2
]

, b < Ru. (52)

The Coulomb-phase function for a point-charge distribution is

χC(b) = 2Zα ln(Ru/b). (53)

The Coulomb-scattering amplitude F u
C(q1) is decomposed as in Eq.(27). It is written as a

sum of two terms; the point-Coulomb amplitude and a correction term, δF u
C(q1). The point

amplitude is calculated exactly. The correction term is the difference between the Coulomb

amplitudes for exteneded and point charges, respectively. In this term the fixed longitudinal

momentum transfer can be put to zero. The difference is calculated numerically from the

formula

δF u
C(q1⊥, q1‖) = i

∫ Ru

0
db b2

J1(q1⊥b)

q1⊥b
∂b

[

eiχ
u
C
(b) − eiχC(b)

]

. (54)
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The integral in the last step extends over the nuclear charge distribution alone.

Next we look at the nuclear amplitude of Eq.(37).

FN(q⊥) = i
∫ ∞

0
db bJ0(q⊥b)e

iχu
C
(b)
[

1− eiχN (b)
]

. (55)

The nuclear phase-shift function is related to the target-thickness function TA(b) by

iχN (b) = −1
2
σ(1− iα)TA(b), (56)

where σ is the pion-nucleon total cross section, and α the ratio of real to imaginary part of

the forward elastic pion-nucleon scattering amplitude. The target-thickness function for a

nucleus of uniform density is

TA(b) =
3A

2πR2
u

√

1− b2/R2
u. (57)

We have chosen numerical values for the hadronic parameters appropriate for pions of 190

GeV/c; i.e. σ = 24.1 mb and α = −0.06 [12, 13].
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[11] G. Fäldt, Phys. Rev. D 2, 846 (1970).

[12] A. S. Carroll et al., Phys. Lett. B 80, 423 (1979).

[13] J. P. Burq et al., Phys. Lett. B 109, 111 (1982).

21


	I Introduction
	II The Coulomb amplitude
	III The nuclear amplitude
	IV The polarizability amplitude
	V Bremsstrahlung cross-section distribution
	VI Summary
	VII acknowlegments
	VIII Appendix
	 References

