Primakoff Production at OKA Some things to expect and remember

V. Molchanov

Institute for High Energy Physics Protvino, Russia

07.04.2011

Outline

What is Primakoff production

Matrix elements

Formfactors

Strong production

Some numbers

What Is Primakoff Effect

Process of electromagnetic production of hadrons in a nucleus Coulomb field at high energy

$$B+(A,Z)\to X+(A,Z)$$

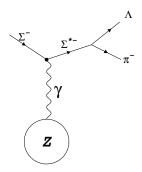
Assumed

- ► Coherency
- ► There are processes

$$B + \gamma \to X$$

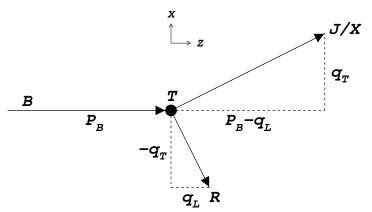
$$J \to B + \gamma$$

Example: $\Sigma(1385)^-$ production



Kinematics Of Primakoff Production

Laboratory reference frame



$$q_{\text{L}} = \frac{m_{\text{X}}^2 - m_{\text{B}}^2 + 2q_{\text{L}}^2 + 2q_{\text{T}}^2}{2P_{\text{B}}} \approx \frac{m_{\text{X}}^2 - m_{\text{B}}^2}{2P_{\text{B}}} \qquad q_0 \approx \frac{q_{\text{L}}^2 + q_{\text{T}}^2}{2m_{\text{T}}}$$

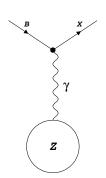
General Expressions For Decay And Production

For decay

$$\mathcal{M} = \mathcal{T}_{\mu} \epsilon_{\mu}^{*}$$
$$d\Gamma = \frac{(2\pi)^{4}}{2M} |\mathcal{M}|^{2} d\Phi_{n}$$

For Primakoff production

$$\begin{split} \mathcal{M} &= eZ(p_1 + p_2)_{\mu} \; \frac{g_{\mu\nu}}{q^2} \; \mathcal{T}_{\nu}^* \\ \mathrm{d}\sigma &= \frac{(2\pi)^4}{4\sqrt{(p_B \cdot p_T)^2 - m_B^2 m_T^2}} \, |\mathcal{M}|^2 \, \mathrm{d}\Phi_n \end{split}$$



Standard Expressions For Primakoff Production This is an approximation

Main assumptions

$$\begin{split} m_X \ll P_B \\ q_T \ll \left(m_X^2 - m_B^2\right)/(2m_X) \end{split}$$

If the beam is not a photon

$$\begin{split} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}q_{\mathrm{T}}^2 \, \mathrm{d}m_{\mathrm{X}}^2} &= \frac{\alpha}{\pi} Z^2 \frac{\sigma[B + \gamma \to X]}{m_{\mathrm{X}}^2 - m_{\mathrm{B}}^2} \frac{q_{\mathrm{T}}^2}{(q_{\mathrm{L}}^2 + q_{\mathrm{T}}^2)^2} |F_{\mathrm{C}}(q_{\mathrm{T}}, \ldots)|^2 \\ \frac{\mathrm{d}\sigma}{\mathrm{d}q_{\mathrm{T}}^2} &= 8\pi \alpha Z^2 \frac{2J_{\mathrm{J}} + 1}{2J_{\mathrm{B}} + 1} \Gamma[J \to B + \gamma] \left(\frac{m_{\mathrm{J}}}{m_{\mathrm{J}}^2 - m_{\mathrm{B}}^2} \right)^3 \frac{q_{\mathrm{T}}^2}{(q_{\mathrm{L}}^2 + q_{\mathrm{T}}^2)^2} |F_{\mathrm{C}}|^2 \end{split}$$

F_c — formfactor — MUST be taken into account

Exact Analytic Calculations For $0^- \rightarrow 1^-$

Matrix elements

For decay like $K^*(892)^+ \to K^+ + \gamma$

$$\mathcal{M} = g \, \epsilon_{\mu\nu\lambda\rho} \, \epsilon_{\mu}^*[\gamma] \, p_{\nu}[\gamma] \, \epsilon_{\lambda}[K^*] \, p_{\rho}[K^*]$$

$$\overline{|\mathcal{M}|^2} = \frac{1}{2J+1} \sum_{\lambda_J} \sum_{\lambda_R} |\mathcal{M}|^2 = g^2 \frac{2}{3} m_J^2 \left(\frac{m_J^2 - m_B^2}{2m_J}\right)^2$$

Thus

$$\mathcal{T}_{\mu} = g \epsilon_{\mu\nu\lambda\rho} \left(p_{\nu}[J] - p_{\nu}[B] \right) \epsilon_{\lambda}[J] p_{\rho}[J]$$

And for Primakoff production

$$\mathcal{M} = eZ(p_1 + p_2)_{\mu} \frac{g_{\mu\nu}}{q^2} \mathcal{T}_{\nu}^*$$

$$\mathcal{M} = \mathrm{eZ} \ 2\,\mathrm{g}\,\mathrm{m}_{\mathrm{T}}\,\mathrm{P}_{\mathrm{B}}\,rac{\mathrm{q}_{\mathrm{T}}}{\mathrm{q}^{2}}\,\epsilon_{\mathrm{y}}^{*}[\lambda_{\mathrm{J}}]$$

Exact Analytic Calculations For $0^- \rightarrow 1^-$ Width and cross section

Decay width

$$\begin{split} \Gamma &= \frac{1}{32\pi^2} \frac{|\mathbf{p}|}{m_J^2} \int |\mathcal{M}|^2 \, \mathrm{d}\Omega \\ \Gamma &= \frac{1}{12\pi} g^2 |\mathbf{p}|^3 = \frac{1}{12\pi} g^2 \left(\frac{m_J^2 - m_B^2}{2m_J} \right)^3 \end{split}$$

Primakoff production cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{dt}} = \frac{1}{64\pi\mathrm{s}} \frac{1}{|\mathbf{p}_1^{\mathrm{CM}}|^2} |\mathcal{M}|^2$$

Using
$$\alpha = e^2/(4\pi)$$
 and $s|p_1^{CM}|^2 = m_T^2 P_B^2$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\alpha}{4}Z^2g^2\frac{q_\mathrm{T}^2}{q^4} = 24\pi\alpha Z^2\Gamma\left(\frac{m_\mathrm{J}}{m_\mathrm{J}^2 - m_\mathrm{B}^2}\right)^3\frac{q_\mathrm{T}^2}{q^4}$$

Exact Analytic Calculations For $0^- \rightarrow 1^+$

Matrix elements

For decay like $K_1(1270)^+ \to K^+ + \gamma$

$$\mathcal{M} = g\left(p[\gamma] \cdot \epsilon[K_1] \ p[K_1] \cdot \epsilon^*[\gamma] - p[K_1] \cdot p[\gamma] \ \epsilon[K_1] \cdot \epsilon^*[\gamma]\right)$$

$$\overline{|\mathcal{M}|^2} = \frac{1}{2J+1} \sum_{\lambda_J} \sum_{\lambda_{\gamma}} |\mathcal{M}|^2 = g^2 \frac{2}{3} m_J^2 \left(\frac{m_J^2 - m_B^2}{2m_J}\right)^2$$

Thus

$$\mathcal{T}_{\mu} = g\left(p[\gamma] \cdot \epsilon[K_1] \ p_{\mu}[K_1] - p[K_1] \cdot p[\gamma] \ \epsilon_{\mu}[K_1]\right)$$

And for Primakoff production

$$\mathcal{M} = eZ(p_1 + p_2)_{\mu} \frac{g_{\mu\nu}}{g^2} \mathcal{T}_{\nu}^*$$

Exact Analytic Calculations For $0^- \rightarrow 1^+$ Matrix elements continued

Exact expression where $\epsilon = \epsilon[\lambda_{\rm J}]$

$$\begin{split} \mathcal{M} &= & eZ \, 2g \sqrt{m_T^2 + q_L^2 + q_T^2} \, \times \, \frac{1}{q^2} \, \times \\ &\times & \left(-\epsilon_0^* (P_{\scriptscriptstyle B} q_{\scriptscriptstyle L} - q_{\scriptscriptstyle L}^2 - q_{\scriptscriptstyle T}^2) - \epsilon_x^* E_{\scriptscriptstyle X} q_{\scriptscriptstyle T} + \epsilon_z^* E_{\scriptscriptstyle X} q_{\scriptscriptstyle L} \right) \end{split}$$

Approximations at $q_T \to 0$, $q_L \to 0$

For projections in the Gottfried-Jackson frame

$$\begin{split} \mathcal{M} &\approx -\mathrm{eZ} \ 2 \ \mathrm{g} \, \mathrm{m_T} \ \mathrm{E_X} \ \frac{\mathrm{q_T}}{\mathrm{q^2}} \qquad \mathrm{for} \quad \epsilon(\mathrm{x}) = -\frac{\epsilon(+1) + \epsilon(-1)}{\sqrt{2}} \\ \mathcal{M} &\approx -\mathrm{eZ} \ 2 \ \mathrm{g} \, \mathrm{m_T} \ \mathrm{m_X} \ \frac{\mathrm{q_L}}{\mathrm{q^2}} \qquad \mathrm{for} \quad \epsilon(\mathrm{z}) = \epsilon(0) \end{split}$$

Formfactor

Some complex number, close to 1 under certain confitions

When the formfactor is 1?

- ► Small charge $\alpha Z_B Z_T \to 0$
- Small nucleus $R \to 0$
- Small interaction cross section $\sigma_{\text{tot}} \to 0$

Total production cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi} = \left| f_{\mathrm{c}} \, F_{\mathrm{c}} + f_{\mathrm{s}} \, F_{\mathrm{s}} \right|^2$$

Formfactor

Usually calculated in Eikonal approximation by people that measure radiative decay widths

Coherence condition

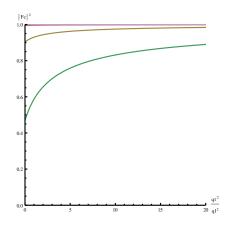
$$\begin{split} F_{\mathrm{C}}(q^2) &= \frac{q^2}{q_{\mathrm{T}}} \frac{1}{4\pi \mathrm{i}} \int d^3 r \\ & e^{\mathrm{i}\vec{q} \, \vec{r}} \, \hat{q}_{\mathrm{T}}^{\scriptscriptstyle \perp} \vec{E}(r) \, e^{-\frac{1}{2} \sigma_B^\prime A \int\limits_{-\infty}^z \mathrm{d}z \, \rho(r)} \, e^{-\mathrm{i}\chi_{\mathrm{C}}(r)} \, e^{-\frac{1}{2} \sigma_X^\prime A \int\limits_z^\infty \mathrm{d}z \, \rho(r)} \end{split}$$

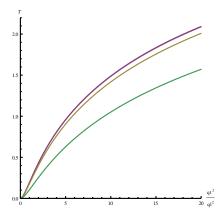
Where
$$\begin{split} &\sigma' = \sigma_{tot}(1-i\rho'), \quad \rho - \text{normalized density,} \\ &\chi_{C}(r) = \int\limits_{-\infty}^{\infty} dz \, V(r), \quad V - \text{Coulomb energy } (\sim \alpha ZZ_B) \end{split}$$

Formfactor: Pointlike Nucleus

No charge distribution. No absorption.

In that case $|F_C|^2 = f(\alpha Z Z_B, q_T^2/q_L^2)$ Shown are 4 curves: H, C, Cu, Pb (Z = 1, 6, 29, 82)

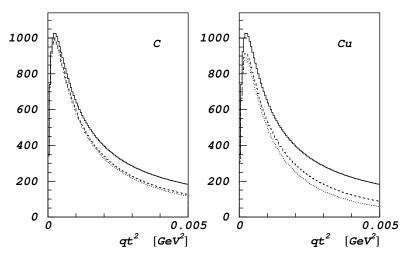




Formfactor: Uniform Solid Sphere R

Three curves: $F_C = 1$, finite nucleus size, plus absorption

Numerical calculations with old program



Production of the $K\pi$ system

Allowed spin/parity

$$J^P = 0^+, 1^-, 2^+, 3^-, \dots$$

For any production mechanism

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}=|\mathrm{f}(\Omega)|^2$$

$$f(\Omega) = \frac{1}{p_i} \sum_J (J + \frac{1}{2}) \langle \lambda_c \lambda_d | T^J | \lambda_a \lambda_b \rangle \, D^{J*}_{\lambda_a - \lambda_b, \lambda_c - \lambda_d} (\varphi, \theta, 0)$$

Assuming P-conservation and spin-0 beam, target, recoil

$$A(-\lambda) = -A(\lambda)$$
 thus $A(0) = 0$

At small θ we have: $D_{\lambda 0}^{J*}(\Omega) \sim \theta^{\lambda} \sim q_T^{\lambda}$ thus $\frac{d\sigma}{dt} \sim t$

In Primakoff production

It seems that due to $\epsilon_{\mu\nu\lambda\rho}$ general expressions coinside with exact ones not only for K*, but for any K π system

Strong Production Cross Sections

Approximate cross section A-dependence for most processes is

$$\sigma \sim A^{2/3}$$

$$\begin{array}{ll} \text{Incoherent} & \text{Coherent} \ M=0 \\ \text{production} & \text{production} \end{array} \qquad \begin{array}{ll} \text{Coherent} \ M=1 \\ \text{production} \end{array}$$

$$\begin{array}{l} \frac{d\sigma}{dt} = C_s e^{-b_1 t} & \frac{d\sigma}{dt} = C_s e^{-b_1 A^{2/3} t} & \frac{d\sigma}{dt} = C_s t e^{-b_1 A^{2/3} t} \\ C_s \sim A^{2/3} & C_s \sim A^{4/3} & C_s \sim A^2 \end{array}$$

Background to Primakoff production lies in the small t region

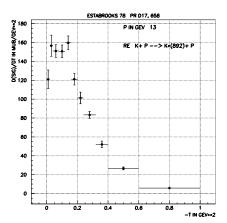
background $\sim C_s$

Experimental Data On $K^*(892)^+$ Production

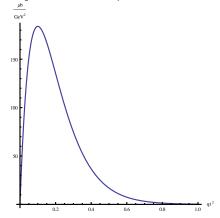
13 GeV: $71 \,\mu b$

30 GeV: 28 ± 5 , 35 ± 5 , 43 ± 5

50 GeV: 12 ± 3 , 22 ± 2



 $C_s t \exp (bt)$ $C_s = 5000, b = -10$ Equivalent to $50 \mu b$

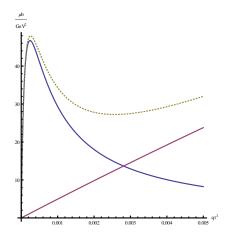


$K^*(892)^+$ Production Expectations

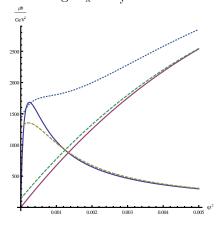
Assuming $F_{\rm c} = 1$

$$Z = 1, A = 1, b = -10 \text{ GeV}^{-2}$$

 $C_s = 5000 \,\mu\text{b}/\text{GeV}^4$



$$\begin{split} Z &= 6, \ A = 12, \ b = -70 \ GeV^{-2}, \\ C_s &= 5000 \ A^2 \ \mu b/GeV^4 \\ Smearing: \ \sigma_x &= \sigma_v = 0.010 \ GeV \end{split}$$



Transferred Transverse Momentum

$$d\sigma/dq_T^2$$
 peaks at $q_T^2 = q_L^2$
 $q_L \approx 15.6 \, \mathrm{MeV}$ for $K^*(892)^+$
 $q_L \approx 4.5 \, \mathrm{MeV}$ for $K\pi$ at the threshold

Transverse Momentum Resolution

$$p_x = p\theta_x$$

$$\sigma[p_x] = p\sigma[\theta_x] + \theta_x\sigma[p]$$

Due to momentum measurement

$$\sigma[p_x] = \theta_x \sigma[p] = \theta_x p \frac{\sigma[p]}{p} \lessapprox \frac{p^*}{\sqrt{2}} \frac{\sigma[p]}{p} = \frac{289 \, \mathrm{MeV}}{\sqrt{2}} \frac{\sigma[p]}{p} \approx \mathrm{few} \; \mathrm{MeV}$$

Due to multiple scattering

$$\sigma[p_x] = p\sigma[\theta_x] \approx p \tfrac{13.6\,\mathrm{MeV}}{p} \sqrt{x/X_0} = 13.6\,\mathrm{MeV} \times \sqrt{x/X_0}$$

Cross Sections And Luminosities

Input: $\Gamma[K^*(892)^+ \to K^+ \gamma] = 50 \pm 5 \text{ keV}$

Possible 10% X₀ targets

$$\mathcal{L} = \rho L N_A / \mu$$
 $\mathcal{L}_C = 0.214 \, b^{-1}$ $\mathcal{L}_{Cu} = 0.0122 \, b^{-1}$

Primakoff narrow K^* production assuming $|F_c|=1$

(A,Z)	$\max q_T^2 [GeV^2]$	$\sigma_{ ext{prim}} \left[\mu ext{b} ight]$	
\overline{C}	0.001	1.352	$0.29 \cdot 10^{-6}$
Cu	0.001	31.59	$0.39 \cdot 10^{-6}$

Note: $2 \text{ mm Cu} \approx 14\% X_0$

Events Expected

Primakoff K*+ for $10\% \, \mathrm{X_0}$ C target with $q_{\scriptscriptstyle T}^2 < 0.001 \, \mathrm{GeV}^2$

 $0.5 \cdot 10^6 \text{ K}^+$ per spill

1 day perfect accelerator running $(24 \times 60 \times 6 = 8640 \text{ spills})$ 50% dead time

0.8 - formfactor and mass window selection effects

Rate
$$\approx 500 \times BR \times Eff$$
 events $\frac{events}{day}$

Other Primakoff production processes

$$\frac{\sigma[p \to \Delta(1232)^+]}{\sigma[K^+ \to K^*(892)^+]} \approx 11 \qquad \frac{\sigma[\pi^+ \to \rho^+]}{\sigma[K^+ \to K^*(892)^+]} \approx 1.3$$

Outlook

