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A new restriction on fermion quantum numbers in gauge theories is derived. For instance, it is shown that an SU(2) 
gauge theory with an odd number of left-handed fermion doublets (and no other representations) is mathematically incon- 
sistent. 

It has been a long-standing puzzle to elucidate the 
properties of  an SU(2) gauge theory with a single dou- 
blet of left-handed 0Veyl) fermions. This theory defies 
simple phenomenological descriptions. There is no ob- 
vious attractive channel in which a fermion condensate 
could form, consistent with Fermi statistics and 
Lorentz invariance. But it is hard to believe that the 
fermions could remain massless in the presence of 
strong SU(2) gauge forces at long distances. 

This puzzle persists (in the absence of other repre- 
sentations) whenever the number of elementary fer- 
mion doublets is odd. An even number of doublets, 
even if they have zero bare mass, could pair up and be- 
come massive Dirac fermions through spontaneous 
chiral symmetry breaking. With an odd number of  ele- 
mentary doublets, however, there would always be 
one massless doublet left over after any assumed chiral 
symmetry breaking, as long as the SU(2) gauge symme- 
try remains unbroken. 

Of course, there is no real paradox here. Perhaps 
our heuristic pictures of  strongly interacting gauge 
theories are inadequate. However, the facts noted 
above do suggest that something is strange about an 
SU(2) gauge theory with an odd number of elementary 
doublets. The purpose of this paper is to determine 
precisely what is strange about these theories; we will 
see that they are mathematically inconsistent! The in- 
consistency arises from a problem somewhat analogous 
to the Adler-Bell-Jackiw anomaly. 

I Supported in part by the National Science Foundation 
under Grant No. PHY80-19754. 

Mthough a hamiltonian approach exists, let us first 
look at this problem from the point of view of 
euclidean functional integrals. The starting point is 
the fact [1] that the fourth homotopy group of SU(2) 
is nontrivial, 

7r4 (SU(2)) = Z 2. (1) 

[Note that we are dealing with the fourth homotopy 
group, while the third homotopy group, 7r3(SU(2)) 
= Z, has entered in instanton studies [2]. The analogue 
ofrr 4 has entered in some recent studies [3] of 2 + 1 
dimensional models.] Eq. (1)means that in four-di- 
mensional euclidean space, there is a gauge transforma- 
tion U(x) such that U(x) ~ 1 as Ixl -+ o% and U(x) 
"wraps" around the gauge group in such a way that it 
cannot be continuously deformed to the identity. The 
fact that the homotopy group is Z 2 means that a 
gauge transformation that wraps twice around SU(2) 
in this way can be deformed to the identity. We will 
not need the detailed form of U(x). 

The existence of the topologically non-trivial map- 
ping U = U(x) means that when we carry out the 
euclidean path integral 

f (dAu)exp(-+ f d4xtrF vFUV), (2) 

we are actually double counting. For every gauge field 
Au, there is a conjugate gauge field 

AU=U-1A U-iu-lo U, 
which makes exactly the same contribution to the 
functional integral. There is no way to eliminate this 
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double counting because A ,  and A U lie in ' the same 
sector of  field space; A u can be reached continuously 
from Au without passing through singularities or infin- 
ite action barriers. But, in the absence of  fermions, 
the double counting is harmless and cancels out when 
one calculates vacuum expectation values. 

Now let us include fermions. Introducing, say, a 
single doublet of  left-handed fermions, we now must 
deal with 

z= f d¢ d~ fdA 

×exp(-fd4x[(1/2g2)trF~v+~i~] ) . (3) 

We would like to integrate out the fermions and dis- 
cuss the effective theory with the fermions eliminated. 

As is well known, for a theory with a doublet of  
Dirac fermions, the basic integral is 

f(d  d~)Dira c exp(t~i~gff) = det i~9. (4) 

Here the right-hand side is, formally, the infinite prod- 
uct of  all eigenvalues of  the hermitian Operator i49 
= i3,~D~. Certain theories - those that are afflicted 
with Adler -Bel l - Jack iw anomalies - are ill-defined 
because it is impossible to renormalize this formal 
product so as to get a gauge invariant answer. However, 
a doublet o f  Dirac fermions could have a gauge invar- 
iant bare mass; this means that Pauli-Villars regular- 
ization is available, and hence that the determinant in 
(4) can be defined satisfactorily. This determinant is 
completely gauge invariant - invariant both under 
inffmitessimal gauge transformations and under the 
topologically non-trivial gauge transformation U dis- 
cussed earlier. 

Now, with the gauge group SU(2), a doublet o f  
Dirac fermions is exactly the same as two left-handed 
or Weyl doublets. Hence the fermion integration with 
a single Weyl doublet would give precisely the square 
root of  (4): 

f(d  d~)wey 1 exp(~iJ~ff)  = (det i ~ )  1/2. (5) 

But an ambiguity arises here; the sciuare root has two 
signs. As we will see, this ambiguity leads to trouble. 

Picking a particular gauge field Au, we are free to 
define in an arbitrary way the sign of  (det i ~ )  1/2 for 

this field. Once this is done, there is no further free- 
dom; to satisfy the Schwinger-Dyson equations we 
must define the fermion integral (det i ~ )  1/2 to vary 
smoothly as A~ is varied. 

Defined in this way (det i~0) 1/2 is certainly invar- 
iant under inf'mitessimal gauge transformations - since 
the sign does not change abruptly. But nothing guar- 
antees that (det igl)l/2 is invariant under the topologi- 
cally non-trivial gauge transformation U. In fact, as 
we will see, (det i49) 1/2 is odd under U. We will see 
that for any gauge field Au, 

[det i49(Au) ] 1/2 = - [ d e t  i~O(AU)] 1/2 (6) 

In other words, if one continuously varies the gauge 
u 

field f r o m A  u toA u , one ends up with the opposite 
sign of the square root.  

Before explaining why eq. (6) is valid, let us first 
discuss why it results in the mathematical inconsis- 
tency of  the SU(2) theory with a single left-handed 
doublet. The partition function would be 

Z= f dAu(deti~)l/2exp(-1-J-- ['d4xtrF 2 ). (7) 
2g2 d uv 

But this vanishes identically, because the contribution 
of any gauge field A u is exactly cancelled by the 
equal and opposite contribution o f A  U ! Likewise the 
path integral Z X with insertion of  any gauge invariant 
operator X is identically zero. So expectation values 
are indeterminate, (X) = Zx/Z = 0/0. For this reason, 
the theory is ill-defined. 

One cannot avoid this problem by taking the abso- 
lute value of  (det i 0 )  1/2 ; the resulting theory would 
not obey the Schwinger-Dyson equations. Nor can 
one consistently integrate over only "half"  of  field 

u 
space, since A~ and A u are continuously connected. 

It remains to explain eq. (6). For convenience, 
take space- t ime to be a sphere of  large volume so 
that the spectrum of  i 0 is discrete. We may as well as- 
sume there are no zero eigenvalues since otherwise 
det iO(A u) vanishes and (6) is certainly true. The 
eigenvalues of  i~O are real and (fig. 1) for every eigen- 
value X there is an eigenvalue -X,  since if i49~k = Xff, 
then i~(T5 ~ )  = -X(T5 ~). 

Taking the square root of  det i J0 means that we 
want the product of  only half  of  the eigenvalues, not 
all of  them. We may suppose that for every pair of  
eigenvalues CA, - X )  we pick one or the other, but  not 
both. For instance, for a particular gauge field A u we 
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Fig. 1. The  spect rum of  the  Dirac operator for a particular 
gauge field A# .  The square root  o f  the  de terminant  m a y  be 
deffmed - for this particular gauge field - as the  product  of  
the  positive eigenvalues. 

may define (det i~)  1/2 to be the product of  the posi- 
tive eigenvalues (fig. 1 ). 

Now imagine varying the gauge field along a contin- 
uous path in field space from A# to A U. For instance, 
one may consider the gauge field A t = (1 - t)Au 
+ tA U, with t varied smoothly from zero to one. Let 
us follow the flow of  the eigenvalues as a function of  
t. The spectrum of  i 0 is precisely the same at t = 1 as 
it is at t = 0. However, the individual eigenvalues may 
rearrange themselves as t is varied from zero to one. 

As will be explained, the Atiyah-Singer index theo- 
rem predicts that such a rearrangement occurs. The 
simplest rearrangement allowed by the theorem is indi- 
cated in fig. 2. A single pair ofeigenvalues {X(t), -X(t)} 
cross at zero and change places as t is varied form zero 
to one. 

In particular, one of  the eigenvalues which was pos- 

(2) 

J 
J 

0 ; r ~  / o  

Fig. 2. The flow of  eigenvalues as the  gauge field is varied 
from A#  (left o f  drawing) to A U (right o f  drawing). The 
square root  o f  the  de terminant  may  be defined as the  product  
of  the  eigenvalues indicated by solid lines; it vanishes and 
changes sign at t = t 0. 

itive at t = 0 is negative by the time t = 1. If  at t = 0, 
(det igl)l/2 was defined as the product of  the positive 
eigenvalues, then, following the eigenvalues continu- 
ously, by the time we reach t = 1 (det i~)1/2 is the 
product of  many positive eigenvalues and a single nega- 
tive one. This means that (det i~ )  1/2 has the opposite 
sign at t = 1 from its value at t = 0. The square root 
vanishes when the eigenvalue pair passes through zero 
(t = t o in fig. 2) and is negative for t > t o. 

The Atiyah-Singer theorem permits more compli- 
cated rearrangements o f  eigenvalues, but the number 
of  positive eigenvalues that become negative as t is 
varied from 0 to 1 is always odd. This is the basis for 
eq. (6). 

The connection between the index theorem and the 
flow of  eigenvalues is well known in mathematics [4] 
and has been discussed in the physics literature [5].  
What is relevant for our problem is a slightly exotic 
form o f  the index theorem, namely the mod two index 
theorem for a certain five-dimensional Dirac operator 

[61. 
Consider the five-dimensional Dirac equation for an 

SU(2) doublet of  fermions, 

5 p3 ) 
~9(5'@ = 7i\~i+~= 1AaT a q~=0.  (8) 

i=1 

The spinor • has eight components because the spinor 
representation of  0(5)  is four dimensional while an 
SU(2) doublet has two components. 

The spinor representation of  0 (5 ) i s  pseudo-real, 
rather than real, and the doublet of  SU(2) is likewise 
pseudo-real. But the tensor product of  the spinor rep- 
resentation of  0(5)  with the doublet of  SU(2) is a real 
representation of  0(5)  × SU(2). This means that in 
(8), we can take the gamma matrices ? i to be real, 
symmetric 8 X 8 matrices while the anti-hermitian 
generators T a of  SU(2) are real, anti-symmetric ma- 
trices • 1. 

The five-dimensional Dirac operator ~95 for an 
SU(2) doublet is therefore a real, antisymmetric opera- 

¢1 In fact, one can arrange q, as a two-component column vec- 
tor of quaternions q, = (~1) _ which would have eight real 

~v2 
components .  Such a co lumn vector can be acted on  from 
the left by a 2 × 2 uni tary matr ix of  quaternions  [making 
the  group Sp(2) or 0(5)]  and on the  right by  a uni tary qua- 
ternion [the group Sp(1) or SU(2)] .  This is the  desired 
eight-dimensional real representat ion of  0 ( 5 )  X SU(2). 
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(3) 

A~ 

A~ 

Fig. 3. A five-dimensional cylinder, S 4 X R, on which an 
instanton-like gauge field is defined. 

tor, acting on an in£mite dimensional space. The eigen- 
values of  such a real, antisymmetric operator  either 
vanish or are imaginary and occur in complex conju- 
gate pairs. When the gauge field A u is varied, the num- 
ber o f  zero eigenvalues of  j~5 can change only if  a com- 
plex conjugate pair o f  eigenvalues moves to - or away 
from - the origin. The number of  zero eigenvalues o f  
jp5 modulo  two is therefore a topological invariant. It 
is known as the mod two index of  the Dirac operator.  

Now, consider a five dimensional cylinder S 4 X R 
(fig. 3). Let xU, # = 1, ..., 4, be coordinates for S 4 
while the posi t ion in the " t ime"  direction (position in 
R) is called r. Consider the following five-dimensional 
instanton-like SU(2) gauge field. For  all xU and r ,  A r 
= O. ButAu(X°,  r) ,  # = 1 .... , 4 ,  is - for each r - a 
four-dimensional gauge field described as follows. For  
7. ~ _ o o  Au (x °, 7.) approaches the four-dimensional 
gauge field A u of  our previous discussion (t = 0 in fig. 
2). For  7. -> +ooAu(x °, 7.) approaches what we previous- 
ly called AzU (t = 1 in fig. 2). As 7- varies from - ~  to 
+o% A#(X o ' 7.) varies adiabatically from Au to A U, 
along the same path in field space considered in fig. 2. 

The rood two At iyah-S inge r  index theorem pre- 
dicts that the number of  zero modes in this five-dimen- 
sional gauge field is odd - equal to one modulo  two ,2 .  

On the other hand, the number of  zero modes of  
~9 5 , modulo two, can be calculated in terms o f  the 
eigenvalue flow of  fig. 2. The Dirac equation g}5 ~I' = 0 
can be writ ten 

dq~/dT. = ,,/rg)4 ~ ,  (9) 

,2 Actually, in a special case one can easily find the zero mode. 
If one conformally compactifies S 4 × R to the five-sphere 
S s , then on S 5 one can choose the instanton field to be in- 
variant (up to a gauge transformation) under an SU(3) sub- 
group of the symmetry group 0(6) of the five-sphere. The 
fermion zero mode is then the unique SU(3) invaxiant spinor 
field that can be defined. 

where ~ 4 = ~4= l'),~tD u is - at each 7- - a four-dimen- 
sional Dirac operator.  

Since Au(x a, r) evolves adiabatically in r ,  (9) can 
be solved in the adiabatic approximation.  We write 
~(xU, r )  = F(r)q~r(xU), where ~r(xU) is a smoothly 

evolving solution o f  the eigenvalue equation 

~[rI~a ggr (x u) = )~(r)c~r (x#). (10) 

The eigenvalues X(r) evolve on the curves of  fig. 2 
( i ~  and ,,/tO4 have the same spectrum). In the adia- 
batic limit, eq. (9) now reduces to dF/dr = -~(r)F(r),  
and the solution is 

F(7.) = F (0 )  e x p ( -  f dr '  X ( r ' ) ) .  (11) 

0 

This is normalizable only if ~ is positive for r ~ +0% 
and negative for r ~ _oo. 

In the adiabatic approximation,  the number of  zero 
eigenvalues of~95 is therefore equal to the number of  
eigenvalue curves in fig. 2 which pass from negative to 
positive values (or from positive to negative values) 
between t = 0 and t = 1. When corrections to the adia- 
batic approximation are considered, this gives the num- 
ber o f  zero eigenvalues modulo two. 

The At iyah-S inger  theorem, which requires that  
has an odd number of  zero eigenvalues, therefore 

implies that the number o f  eigenvalue curves that pass 
from positive to negative values in fig. 2 is odd. This is 
precisely what we needed to show that (det i ~ )  1/2 is 
odd under the topologically non-trivial gauge transfor- 
mation U. 

Now let us consider some generalizations. With n 
left-handed fermion doublets, the fermion integration 
would give (det i ~ )  n/2. If n is even, the sign of  the 
square root  does not  matter,  but  i f n  is odd, the theo- 
ry suffers from the same inconsistency as before. 

This persists even if additional gauge or Yukawa 
couplings are added to an SU(2) gauge theory.  Since 
the fermion integration is necessarily either even or 
odd under U, if it is odd in a pure SU(2) gauge theory,  
it remains odd if  additional gauge or Yukawa couplings 
are smoothly switched on. In particular, the standard 
SU(3) X SU(2) X U(1) model  of strong, weak, and 
electromagnetic interaction would be inconsistent if 
the number of  left-handed fermion doublets were odd. 

If one considers theories with SU(2) representations 
of  isospin bigger than one half, the At iyah-S inger  
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theorem gives the following result. If one normalizes 
the SU(2) generators conventionally so that tr T 2 
= 1/2 in the doublet  representation, then the fermion 
integration is even or odd depending on whether 
tr T 2, evaluated among all the left-handed fermions, 
is an integer or half-integer. The inconsistent theories 
are those where tr T 2 is a half-integer. (In an ordinary 
instanton field, the number of  fermion zero modes is 
2 tr T 2, so the inconsistent theories are precisely those 
with an odd number of  fermion zero modes in an 
instanton field.) 

Considering gauge groups other than SU(2), we 
have 

l r4(SU(N))= 0, N >  2, 

7r4(O(N)) = 0, N >  5, 

n4(Sp(N)) = Z2, any N. (12) 

Thus non-trivial conditions arise only for Sp(N) 

groups. 
Finally, let us note how this appears in a 

hamiltonian framework. Space permits only a brief  

statement of  results. 
From a hamiltonian viewpoint, one introduces the 

group G consisting of  all gauge transformations 
U(x, y,  z) defined in three-dimensional space such that 
U(x) ~ 1 as Ixl ~ o o .  

The fact that 7r4(SU(2)) = Z 2 means that zr 1 (G) 
= Z 2. For the topologically non-trivial gauge transfor- 
mat ion U = U(x, y, z, t) that  we have discussed is - at 
each t - an element o f  G. At t -+ _ o o  or t -+ +oo it is 
the identi ty in G; varying t from _ o o  to +0% U de- 
scribes a loop in G which cannot be deformed away. 

In canonical quantization, one encounters opera- 
tors 

aa(x)  = g-2DiFgi(x ) - ~3,0TaO, (13) 

which are generators of  the Lie algebra of  G. However, 
when a group - in this case G - is not  simply con- 
nected, a representation of  the Lie algebra does not 
necessarily provide a representation of  the group. In 

general one gets a representation only of  the simply 
connected covering group C,. Since zr 1 (G) = Z2, the 
center o f  G has a single non-trivial element P. 

In quantum field theory,  P - being in the center o f  
- commutes with all fields and therefore is a c-num- 

ber. Since p2  = 1, we must have P = +1 or P = - 1 (as 
an operator statement) in any given field theory.  The 
theories in which the fermion integration is odd under 
U are the theories in which P = - 1 .  

Theories with P = - 1  are inconsistent for the fol- 
lowing reason. According to Gauss's law, physical 
states I~)mus t  be gauge invariant, obeying QalqJ) = 0 
and hence Plff) = I~b). I f P  = - 1 ,  there are no states in 
the entire Hilbert space that obey Gauss's law. 

Similar behavior can be seen in the models of  ref. 
[3] by  means o f  canonical quantization. This was one 
motivation for the present work. 
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