GLOBAL ASPECTS OF CURRENT ALGEBRA

Edward WITTEN*

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 4 March 1983

A new mathematical framework for the Wess-Zumino chiral effective action is described. It is shown that this action obeys an a priori quantization law, analogous to Dirac's quantization of magnetic change. It incorporates in current algebra both perturbative and non-perturbative anomalies.

The purpose of this paper is to clarify an old but relatively obscure aspect of current algebra: the Wess-Zumino effective lagrangian [1] which summarizes the effects of anomalies in current algebra. As we will see, this effective lagrangian has unexpected analogies to some 2 + 1 dimensional models discussed recently by Deser et al. [2] and to a recently noted SU(2) anomaly [3]. There also are connections with work of Balachandran et al. [4].

For definiteness we will consider a theory with $SU(3)_L \times SU(3)_R$ symmetry spontaneously broken down to the diagonal SU(3). We will ignore explicit symmetry-breaking perturbations, such as quark bare masses. With $SU(3)_L \times SU(3)_R$ broken to diagonal SU(3), the vacuum states of the theory are in one to one correspondence with points in the SU(3) manifold. Correspondingly, the low-energy dynamics can be conveniently described by introducing a field $U(x^{\alpha})$ that transforms in a so-called non-linear realization of $SU(3)_L \times SU(3)_R$. For each space-time point x^{α} , $U(x^{\alpha})$ is an element of SU(3): a 3×3 unitary matrix of determinant one. Under an $SU(3)_L \times SU(3)_R$ transformation by unitary matrices (A, B), U transforms as $U \rightarrow AUB^{-1}$.

The effective lagrangian for U must have $SU(3)_L \times SU(3)_R$ symmetry, and, to describe correctly the low-energy limit, it must have the smallest possible number of derivatives. The unique choice with only two derivatives is

$$\mathcal{L} = \frac{1}{16} F_{\pi}^2 \int \mathrm{d}^4 x \,\mathrm{Tr}\,\partial_{\mu} U \,\partial_{\mu} U^{-1}, \qquad (1)$$

* Supported in part by NSF Grant PHY80-19754.

where experiment indicates $F_{\pi} \simeq 190$ MeV. The perturbative expansion of U is

$$U = 1 + \frac{2i}{F_{\pi}} \sum_{a=1}^{8} \lambda^{a} \pi^{a} + \cdots, \qquad (2)$$

where λ^a (normalized so Tr $\lambda^a \lambda^b = 2\delta^{ab}$) are the SU(3) generators and π^a are the Goldstone boson fields.

This effective lagrangian is known to incorporate all relevant symmetries of QCD. All current algebra theorems governing the extreme low-energy limit of Goldstone boson S-matrix elements can be recovered from the tree approximation to it. What is less well known, perhaps, is that (1) possesses an extra discrete symmetry that is *not* a symmetry of QCD.

The lagrangian (1) is invariant under $U \leftrightarrow U^{T}$. In terms of pions this is $\pi^{0} \leftrightarrow \pi^{0}$, $\pi^{+} \leftrightarrow \pi^{-}$; it is ordinary charge conjugation. (1) is also invariant under the naive parity operation $\mathbf{x} \leftrightarrow -\mathbf{x}$, $t \leftrightarrow t$, $U \leftrightarrow U$. We will call this P_{0} . And finally, (1) is invariant under $U \leftrightarrow U^{-1}$. Comparing with eq. (2), we see that this latter operation is equivalent to $\pi^{a} \leftrightarrow -\pi^{a}$, $a = 1, \ldots, 8$. This is the operation that counts modulo two the number of bosons, N_{B} , so we will call it $(-1)^{N_{B}}$.

Certainly, $(-1)^{N_{B}}$ is not a symmetry of QCD. The problem is the following. QCD is parity invariant only if the Goldstone bosons are treated as pseudoscalars. The parity operation in QCD corresponds to $\mathbf{x} \leftrightarrow -\mathbf{x}$, $t \leftrightarrow t$, $U \leftrightarrow U^{-1}$. This is $P = P_{0}(-1)^{N_{B}}$. QCD is invariant under P but not under P_{0} or $(-1)^{N_{B}}$ separately. The simplest process that respects all bona fide symmetries of QCD but violates P_{0} and $(-1)^{N_{B}}$ is $K^{+}K^{-} \rightarrow \pi^{+}\pi^{0}\pi^{-}$ (note that the ϕ meson decays to both $K^{+}K^{-}$ and $\pi^{+}\pi^{0}\pi^{-}$). It is natural to ask whether there is a simple way to add a higher-order term to (1) to obtain a lagrangian that obeys *only* the appropriate symmetries.

The Euler-Lagrangian equation derived from (1) can be written

$$\partial_{\mu} \left(\frac{1}{8} F_{\pi}^2 U^{-1} \partial_{\mu} U \right) = 0.$$
(3)

Let us try to add a suitable extra term to this equation. A Lorentz-invariant term that violates P_0 must contain the Levi-Civita symbol $\varepsilon_{\mu\nu\alpha\beta}$. In the spirit of current algebra, we wish a term with the smallest possible number of derivatives, since, in the low-energy limit, the derivatives of U are small. There is a unique P_0 -violating term with only four derivatives. We can generalize (3) to

$$\partial_{\mu} \left(\frac{1}{8} F_{\pi}^{2} U^{-1} \partial_{\mu} U \right) + \lambda \varepsilon^{\mu\nu\alpha\beta} U^{-1} \left(\partial_{\mu} U \right) U^{-1} \left(\partial_{\nu} U \right) U^{-1} \left(\partial_{\alpha} U \right) U^{-1} \left(\partial_{\beta} U \right) = 0, \quad (4)$$

 λ being a constant. Although it violates P_0 , (4) can be seen to respect $P = P_0(-1)^{N_B}$.

Can eq. (4) be derived from a lagrangian? Here we find trouble. The only pseudoscalar of dimension four would seem to be $\epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} U^{-1}(\partial_{\mu}U) \cdot U^{-1}(\partial_{\nu}U)U^{-1}(\partial_{\alpha}U)U^{-1}(\partial_{\beta}U)$, but this vanishes, by antisymmetry of $\epsilon^{\mu\nu\alpha\beta}$ and cyclic symmetry of the trace. Nevertheless, as we will see, there is a lagrangian.

Let us consider a simple problem of the same sort. Consider a particle of mass m constrained to move on an ordinary two-dimensional sphere of radius one. The lagrangian is $\mathcal{L} = \frac{1}{2}m\int dt \dot{x}_i^2$ and the equation of motion is $m\ddot{x}_i + mx_i(\sum_k \dot{x}_k^2) = 0$; the constraint is $\sum x_i^2 = 1$. This system respects the symmetries $t \leftrightarrow -t$ and separately $x_i \leftrightarrow -x_i$. If we want an equation that is only invariant under the combined operation $t \leftrightarrow -t$, $x_i \leftrightarrow x_i$, the simplest choice is

$$m\ddot{x}_{i} + mx_{i}\left(\sum_{k} \dot{x}_{k}^{2}\right) = \alpha \varepsilon_{ijk} x_{j} \dot{x}_{k}, \qquad (5)$$

where α is a constant. To derive this equation from a lagrangian is again troublesome. There is no obvious term whose variation equals the right-hand side (since $\epsilon_{ijk}x_ix_i\dot{x}_k = 0$).

However, this problem has a well-known solution. The right-hand side of (5) can be understood as the Lorentz force for an electric charge interacting with a magnetic monopole located at the center of the sphere. Introducing a vector potential A such that $\nabla \times A = x/|x|^3$, the action for our problem is

$$I = \int \left(\frac{1}{2}m\dot{x}_i^2 + \alpha A_i \dot{x}_i\right) \mathrm{d}t.$$
(6)

This lagrangian is problematical because A_i contains a Dirac string and certainly does not respect the symmetries of our problem. To explore this quantum mechanically let us consider the simplest form of the Feynman path integral, $\text{Tr}e^{-\beta H} = \int dx_i(t)e^{-t}$. In e^{-t} the troublesome term is

$$\exp\left(i\alpha\int_{\gamma}A_{i}\,\mathrm{d}\,x^{i}\right),\tag{7}$$

where the integration goes over the particle orbit γ : a closed orbit if we discuss the simplest object Tr e^{- βH}.

By Gauss's law we can eliminate the vector potential from (7) in favor of the magnetic field. In fact, the closed orbit γ of fig. 1a is the boundary of a disc D, and by Gauss's law we can write (7) in terms of the magnetic flux through D:

$$\exp\left(i\alpha\int_{\gamma}A_{i}\,\mathrm{d}x^{i}\right) = \exp\left(i\alpha\int_{D}F_{ij}\,\mathrm{d}\Sigma^{ij}\right). \tag{8}$$

The precise mathematical statement here is that since $\pi_1(S^2) = 0$, the circle γ in S^2 is the boundary of a disc D (or more exactly, a mapping γ of a circle into S^2 can be extended to a mapping of a disc into S^2).

The right-hand side of (8) is manifestly well defined, unlike the left-hand side, which suffers from a Dirac string. We could try to use the right-hand side of (8) in a Feynman path integral. There is only one problem: D isn't unique. The curve γ also bounds the disc D' (fig. 1c). There is no consistent way to decide whether to choose

Fig. 1. A particle orbit γ on the two-sphere (part (a)) bounds the discs D (part (b)) and D' (part (c)).

D or D' (the curve γ could continuously be looped around the sphere or turned inside out). Working with D' we would get

$$\exp\left(i\alpha\int_{\gamma}A_{i}\,\mathrm{d}x^{i}\right) = \exp\left(-i\alpha\int_{D'}F_{ij}\,\mathrm{d}\Sigma^{ij}\right),\tag{9}$$

where a crucial minus sign on the right-hand side of (9) appears because γ bounds D in a right-hand sense, but bounds D' in a left-hand sense. If we are to introduce the right-hand side of (8) or (9) in a Feynman path integral, we must require that they be equal. This is equivalent to

$$1 = \exp\left(i\alpha \int_{\mathbf{D}+\mathbf{D}'} F_{ij} \,\mathrm{d}\Sigma^{ij}\right). \tag{10}$$

Since D + D' is the whole two sphere S², and $\int_{S^2} F_{ij} d\Sigma^{ij} = 4\pi$, (10) is obeyed if and only if α is an integer or half-integer. This is Dirac's quantization condition for the product of electric and magnetic charges.

Now let us return to our original problem. We imagine space-time to be a very large four-dimensional sphere M. A given non-linear sigma model field U is a mapping of M into the SU(3) manifold (fig. 2a). Since $\pi_4(SU(3)) = 0$, the four-sphere in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q.

By analogy with the previous problem, let us try to find some object that can be integrated over Q to define an action functional. On the SU(3) manifold there is a unique fifth rank antisymmetric tensor ω_{ijklm} that is invariant under SU(3)_L × SU(3)_R*. Analogous to the right-hand side of eq. (8), we define

$$\Gamma = \int_{Q} \omega_{ijklm} d\Sigma^{ijklm}.$$
 (11)

^{*} Let us first try to define ω at U = 1; it can then be extended to the whole SU(3) manifold by an $SU(3)_L \times SU(3)_R$ transformation. At U = 1, ω must be invariant under the diagonal subgroup of $SU(3)_L \times SU(3)_R$ that leaves fixed U = 1. The tangent space to the SU(3) manifold at U = 1 can be identified with the Lie algebra of SU(3). So ω , at U = 1, defines a fifth-order antisymmetric invariant in the SU(3) Lie algebra. There is only one such invariant. Given five SU(3) generators A, B, C, D and E, the one such invariant is Tr ABCDE – Tr BACDE ± permutations. The SU(3)_L × SU(3)_R invariant ω so defined has zero curl $(\partial_i \omega_{jklmn} \pm \text{permutations} = 0)$ and for this reason (11) is invariant under infinitesimal variations of Q; there arises only the topological problem discussed in the text.

Fig. 2. Space-time, a four-sphere, is mapped into the SU(3) manifold. In part (a), space-time is symbolically denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds the discs Q and Q'. The SU(3) manifold is symbolized in these sketches by the interior of the oblong.

As before, we hope to include $\exp(i\Gamma)$ in a Feynman path integral. Again, the problem is that Q is not unique. Our four-sphere M is also the boundary of another five-disc Q' (fig. 2c). If we let

$$\Gamma' = -\int_{Q'} \omega_{ijklm} \mathrm{d}\Sigma^{ijklm}, \qquad (12)$$

(with, again, a minus sign because M bounds Q' with opposite orientation) then we must require $\exp(i\Gamma) = \exp(i\Gamma')$ or equivalently $\int_{Q+Q'} \omega_{ijklm} d\Sigma^{ijklm} = 2\pi \cdot \text{integer}$. Since Q + Q' is a closed five-dimensional sphere, our requirement is

$$\int_{\mathbf{S}} \omega_{ijklm} \mathrm{d}\Sigma^{ijklm} = 2\pi \cdot \text{integer},$$

for any five-sphere S in the SU(3) manifold.

We thus need the topological classification of mappings of the five-sphere into SU(3). Since $\pi_5(SU(3)) = Z$, every five sphere in SU(3) is topologically a multiple of a basic five sphere S₀. We normalize ω so that

$$\int_{\mathbf{S}_0} \omega_{ijklm} \,\mathrm{d}\Sigma^{ijklm} = 2\pi\,,\tag{13}$$

and then (with Γ in eq. (11)) we may work with the action

$$I = \frac{1}{16} F_{\pi}^2 \int \mathrm{d}^4 x \,\mathrm{Tr}\,\partial_{\mu} U \,\partial_{\mu} U^{-1} + n\Gamma, \qquad (14)$$

where *n* is an arbitrary integer. Γ is, in fact, the Wess-Zumino lagrangian. Only the a priori quantization of *n* is a new result.

The identification of S_0 and the proper normalization of ω is a subtle mathematical problem. The solution involves a factor of two from the Bott periodicity theorem. Without abstract notation, the result [5] can be stated as follows. Let y^i , i = 1...5 be coordinates for the disc Q. Then on Q (where we need it)

$$d\Sigma^{ijklm} \omega_{ijklm} = -\frac{i}{240\pi^2} d\Sigma^{ijklm} \left[\operatorname{Tr} U^{-1} \frac{\partial U}{\partial y^i} U^{-1} \frac{\partial U}{\partial y^j} U^{-1} \frac{\partial U}{\partial y^k} U^{-1} \frac{\partial U}{\partial y^l} U^{-1} \frac{\partial U}{\partial y^m} \right].$$
(15)

The physical consequences of this can be made more transparent as follows. From eq. (2),

$$U^{-1}\partial_i U = \frac{2i}{F_{\pi}}\partial_i A + O(A^2), \quad \text{where } A = \Sigma \lambda^a \pi^a.$$
 (16)

So

$$\omega_{ijklm} d\Sigma^{ijklm} = \frac{2}{15\pi^2 F_{\pi}^5} d\Sigma^{ijklm} \operatorname{Tr} \partial_i A \partial_j A \partial_k A \partial_l A \partial_m A + O(A^6)$$
$$= \frac{2}{15\pi^2 F_{\pi}^5} d\Sigma^{ijklm} \partial_i (\operatorname{Tr} A \partial_j A \partial_k A \partial_l A \partial_m A) + O(A^6).$$

So $\int_Q \omega_{ijklm} d\Sigma^{ijklm}$ is (to order A^5 and in fact also in higher orders) the integral of a total divergence which can be expressed by Stokes' theorem as an integral over the boundary of Q. By construction, this boundary is precisely space-time. We have, then,

$$n\Gamma = n \frac{2}{15\pi^2 F_{\pi}^5} \int d^4 x \, \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} A \, \partial_{\mu} A \, \partial_{\nu} A \, \partial_{\alpha} A \partial_{\beta} A + \text{higher order terms.}$$
(17)

In a hypothetical world of massless kaons and pions, this effective lagrangian rigorously describes the low-energy limit of $K^+K^- \rightarrow \pi^+\pi^0\pi^{-\star}$. We reach the remarkable conclusion that in any theory with SU(3)×SU(3) broken to diagonal SU(3), the low-energy limit of the amplitude for this reaction must be (in units given in (17)) an integer.

What is the value of this integer in QCD? Were *n* to vanish, the practical interest of our discussion would be greatly reduced. It turns out that if N_c is the number of colors (three in the real world) then $n = N_c$. The simplest way to deduce this is a

^{*} Our formula should agree for n = 1 with formulas of ref. [1], as later equations make clear. There appears to be a numerical error on p. 97 of ref. [1] $(\frac{1}{6} \text{ instead of } \frac{2}{15})$.

procedure that is of interest anyway, viz. coupling to electromagnetism, so as to describe the low-energy dynamics of Goldstone bosons and photons.

Let

$$Q = \begin{pmatrix} \frac{2}{3} & & \\ & -\frac{1}{3} & \\ & & -\frac{1}{3} \end{pmatrix}$$

be the usual electric charge matrix of quarks. The functional Γ is invariant under global charge rotations, $U \rightarrow U + i\epsilon[Q, U]$, where ϵ is a constant. We wish to promote this to a local symmetry, $U \rightarrow U + i\epsilon(x)[Q, U]$, where $\epsilon(x)$ is an arbitrary function of x. It is necessary, of course, to introduce the photon field A_{μ} which transforms as $A_{\mu} \rightarrow A_{\mu} - (1/e)\partial_{\mu}\epsilon$; e is the charge of the proton.

Usually a global symmetry can straightforwardly be gauged by replacing derivatives by covariant derivatives, $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + ieA_{\mu}$. In the case at hand, Γ is not given as the integral of a manifestly $SU(3)_{L} \times SU(3)_{R}$ invariant expression, so the standard road to gauging global symmetries of Γ is not available. One can still resort to the trial and error Noether method, widely used in supergravity. Under a local charge rotation, one finds $\Gamma \rightarrow \Gamma - \int d^{4}x \ \partial_{\mu} \varepsilon J^{\mu}$ where

$$J^{\mu} = \frac{1}{48\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \Big[Q \Big(\partial_{\nu} U \, U^{-1} \Big) \Big(\partial_{\alpha} U \, U^{-1} \Big) \Big(\partial_{\beta} U \, U^{-1} \Big) \\ + Q \Big(U^{-1} \partial_{\nu} U \Big) \Big(U^{-1} \partial_{\alpha} U \Big) \Big(U^{-1} \partial_{\beta} U \Big) \Big], \qquad (18)$$

is the extra term in the electromagnetic current required (from Noether's theorem) due to the addition of Γ to the lagrangian. The first step in the construction of an invariant lagrangian is to add the Noether coupling, $\Gamma \to \Gamma' = \Gamma - e \int d^4x A_{\mu} J^{\mu}(x)$. This expression is still not gauge invariant, because J^{μ} is not, but by trial and error one finds that by adding an extra term one can form a gauge invariant functional

$$\tilde{\Gamma}(U, A_{\mu}) = \Gamma(U) - e \int d^4 x A_{\mu} J^{\mu} + \frac{ie^2}{24\pi^2} \int d^4 x \, \epsilon^{\mu\nu\alpha\beta} (\partial_{\mu}A_{\nu}) A_{\alpha}$$
$$\times \operatorname{Tr} \Big[Q^2 (\partial_{\beta}U) U^{-1} + Q^2 U^{-1} (\partial_{\beta}U) + QU QU^{-1} (\partial_{\beta}U) U^{-1} \Big].$$
(19)

Our gauge invariant lagrangian will then be

$$\mathcal{L} = \frac{1}{16} F_{\pi}^2 \int d^4 x \, \mathrm{Tr} \, D_{\mu} U D_{\mu} U^{-1} + n \tilde{\Gamma} \,.$$
 (20)

What value of the integer n will reproduce QCD results?

Here we find a surprise. The last term in (18) has a piece that describes $\pi^0 \rightarrow \gamma \gamma$. Expanding U and integrating by parts, (18) has a piece

$$A = \frac{ne^2}{48\pi^2 F_{\pi}} \pi^0 \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}.$$
⁽²¹⁾

This agrees with the result from QCD triangle diagrams [6] if $n = N_c$, the number of colors. The Noether coupling $-eA_{\mu}J^{\mu}$ describes, among other things, a $\gamma\pi^+\pi^0\pi^-$ vertex

$$B = -\frac{2}{3}ie\frac{n}{\pi^2 F_{\pi}^3}\epsilon^{\mu\nu\alpha\beta}A_{\mu}\,\partial_{\nu}\pi^+\,\partial_{\alpha}\pi^-\,\partial_{\beta}\pi^0.$$
(22)

Again this agrees with calculations [7] based on the QCD VAAA anomaly if $n = N_c$. The effective action $N_c \tilde{I}$ (first constructed in another way by Wess and Zumino) precisely describes all effects of QCD anomalies in low-energy processes with photons and Goldstone bosons.

It is interesting to try to gauge subgroups of $SU(3)_L \times SU(3)_R$ other than electromagnetism. One may have in mind, for instance, applications to the standard weak interaction model. In general, one may try to gauge an arbitrary subgroup H of $SU(3)_L \times SU(3)_R$, with generators K^{σ} , $\sigma = 1 \dots r$. Each K^{σ} is a linear combination of generators T_L^{σ} and T_R^{σ} of $SU(3)_L$ and $SU(3)_R$, $K^{\sigma} = T_L^{\sigma} + T_R^{\sigma}$. (Either T_L^{σ} or T_R^{σ} may vanish for some values of σ .) For any space-time dependent functions $\varepsilon^{\sigma}(x)$, let $\varepsilon_L = \sum_{\sigma} T_L^{\sigma} \varepsilon^{\sigma}(x)$, $\varepsilon_R = \sum_{\sigma} T_R^{\sigma} \varepsilon^{\sigma}(x)$. We want an action with local invariance under $U \to U + i(\varepsilon_L(x)U - U\varepsilon_R(x))$.

Naturally, it is necessary to introduce gauge fields $A^{\sigma}_{\mu}(x)$, transforming as $A^{\sigma}_{\mu}(x)$ $\rightarrow A^{\sigma}_{\mu}(x) - (1/e_{\sigma}) \partial_{\mu} \epsilon^{\sigma} + f^{\sigma \tau \rho} \epsilon^{\tau} A^{\rho}_{\mu}$ where e_{σ} is the coupling constant corresponding to the generator K^{σ} , and $f^{\sigma \tau \rho}$ are the structure constants of H. It is useful to define $A_{\mu L} = \sum_{\sigma} e_{\sigma} A^{\sigma}_{\mu} T^{\sigma}_{L}$, $A^{\mu}_{\mu} = \sum_{\sigma} e_{\sigma} A^{\sigma}_{\mu} T^{\sigma}_{R}$.

We have already seen that Γ incorporates the effects of anomalies, so it is not very surprising that a generalization of Γ that is gauge invariant under H exists only if H is a so-called anomaly-free subgroup of $SU(3)_L \times SU(3)_R$. Specifically, one finds that H can be gauged only if for each σ ,

$$\operatorname{Tr}(T_{\rm L}^{\sigma})^3 = \operatorname{Tr}(T_{\rm R}^{\sigma})^3, \qquad (23)$$

which is the usual condition for cancellation of anomalies at the quark level.

If (23) is obeyed, a gauge invariant generalization of Γ can be constructed somewhat tediously by trial and error. It is useful to define $U_{\nu L} = (\partial_{\nu} U)U^{-1}$ and $U_{\nu R} = U^{-1}\partial_{\nu}U$. The gauge invariant functional then turns out to be

$$\tilde{\Gamma}(A_{\mu},U) = \Gamma(U) + \frac{1}{48\pi^2} \int d^4x \, \epsilon^{\mu\nu\alpha\beta} Z_{\mu\nu\alpha\beta},$$

where

$$Z_{\mu\nu\alpha\beta} = -\operatorname{Tr} \Big[A_{\mu L} U_{\nu L} U_{\alpha L} U_{\beta L} + (L \to R) \Big]$$

$$+ i \operatorname{Tr} \Big[\Big[(\partial_{\mu} A_{\nu L}) A_{\alpha L} + A_{\mu L} (\partial_{\nu} A_{\alpha L}) \Big] U_{\beta L} + (L \to R) \Big]$$

$$+ i \operatorname{Tr} \Big[(\partial_{\mu} A_{\nu R}) U^{-1} A_{\alpha L} \partial_{\beta} U + A_{\mu L} U^{-1} (\partial_{\nu} A_{\alpha R}) \partial_{\beta} U \Big]$$

$$- \frac{1}{2} i \operatorname{Tr} \Big(A_{\mu L} U_{\nu L} A_{\alpha L} U_{\beta L} - (L \to R) \Big)$$

$$+ i \operatorname{Tr} \Big[A_{\mu L} U A_{\nu R} U^{-1} U_{\alpha L} U_{\beta L} - A_{\mu R} U^{-1} A_{\nu L} U U_{\alpha R} U_{\beta R} \Big]$$

$$- \operatorname{Tr} \Big[\Big[(\partial_{\mu} A_{\nu R}) A_{\alpha R} + A_{\mu R} (\partial_{\nu} A_{\alpha R}) \Big] U^{-1} A_{\beta L} U$$

$$- \Big[(\partial_{\mu} A_{\nu L}) A_{\alpha L} + A_{\mu L} (\partial_{\nu} A_{\alpha L}) \Big] U A_{\beta R} U^{-1} \Big]$$

$$- \operatorname{Tr} \Big[A_{\mu R} U^{-1} A_{\nu L} U A_{\alpha R} U_{\beta R} + A_{\mu L} U A_{\nu R} U^{-1} A_{\alpha L} U_{\beta L} \Big]$$

$$- \operatorname{Tr} \Big[A_{\mu L} A_{\nu L} U (\partial_{\alpha} A_{\beta R}) U^{-1} + A_{\mu R} A_{\nu R} U^{-1} (\partial_{\alpha} A_{\beta L}) U \Big]$$

$$- i \operatorname{Tr} \Big[A_{\mu R} A_{\nu R} A_{\alpha R} U^{-1} A_{\beta L} U - A_{\mu L} A_{\nu L} A_{\alpha L} U A_{\beta R} U^{-1}$$

$$+ \frac{1}{2} A_{\mu L} A_{\nu L} U A_{\alpha R} A_{\beta R} U^{-1} + \frac{1}{2} A_{\mu R} U^{-1} A_{\nu L} U A_{\alpha R} U^{-1} A_{\beta L} U \Big].$$

$$(24)$$

If eq. (22) for cancellation of anomalies is not obeyed, then the variation of $\tilde{\Gamma}$ under a gauge transformation does not vanish but is

$$\delta \tilde{\Gamma} = -\frac{1}{24\pi^2} \int d^4 x \, \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \epsilon_{\mathrm{L}} \Big[\big(\partial_{\mu} A_{\nu\mathrm{L}} \big) \big(\partial_{\alpha} A_{\beta\mathrm{L}} \big) - \frac{1}{2} i \partial_{\mu} \big(A_{\nu\mathrm{L}} A_{\alpha\mathrm{L}} A_{\beta\mathrm{L}} \big) \Big] - (\mathrm{L} \to \mathrm{R}), \qquad (25)$$

in agreement with computations at the quark level [8] of the anomalous variation of the effective action under a gauge transformation.

Thus, Γ incorporates all information usually associated with triangle anomalies, including the restriction on what subgroups H of SU(3)_L × SU(3)_R can be gauged. However, there is another potential obstruction to the ability to gauge a subgroup of SU(3)_L × SU(3)_R. This is the non-perturbative anomaly [3] associated with π_4 (H). Is this anomaly, as well, implicit in Γ ? In fact, it is.

Let H be an SU(2) subgroup of SU(3)_L, chosen so that an SU(2) matrix W is embedded in SU(3)_L as

$$\hat{W} = \begin{pmatrix} & & 0 \\ W & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}.$$

430

This subgroup is free of triangle anomalies, so the functional $\tilde{\Gamma}$ of eq. (23) is invariant under infinitesimal local H transformations.

However, is $\tilde{\Gamma}$ invariant under H transformations that cannot be reached continuously? Since $\pi_4(SU(2)) = Z_2$, there is one non-trivial homotopy class of SU(2) gauge transformations. Let W be an SU(2) gauge transformation in this non-trivial class. Under \hat{W} , $\tilde{\Gamma}$ may at most be shifted by a constant, independent of U and A_{μ} , because $\delta \tilde{\Gamma} / \delta U$ and $\delta \tilde{\Gamma} / \delta A_{\mu}$ are gauge-covariant local functionals of U and A_{μ} . Also $\tilde{\Gamma}$ is invariant under \hat{W}^2 , since \hat{W}^2 is equivalent to the identity in $\pi_4(SU(2))$, and we know $\tilde{\Gamma}$ is invariant under topologically trivial gauge transformations. This does not quite mean that $\tilde{\Gamma}$ is invariant under W. Since $\tilde{\Gamma}$ is only defined modulo 2π , the fact that $\tilde{\Gamma}$ is invariant under W^2 leaves two possibilities for how $\tilde{\Gamma}$ behaves under W. It may be invariant, or it may be shifted by π .

To choose between these alternatives, it is enough to consider a special case. For instance, it suffices to evaluate $\Delta = \tilde{\Gamma}(U = 1, A_{\mu} = 0) - \tilde{\Gamma}(U = \hat{W}, A_{\mu} = ie^{-1}(\partial_{\mu}\hat{W})\hat{W}^{-1})$. It is not difficult to see that in this case the complicated terms involving $\varepsilon^{\mu\nu\alpha\beta}Z_{\mu\nu\alpha\beta}$ vanish, so in fact $\Delta = \Gamma(U = 1) - \Gamma(U = \hat{W})$. A detailed calculation shows that

$$\Gamma(U=1) - \Gamma(U=\hat{W}) = \pi.$$
⁽²⁶⁾

This calculation has some other interesting applications and will be described elsewhere [9].

The Feynman path integral, which contains a factor $\exp(iN_c\tilde{\Gamma})$, hence picks up under W a factor $\exp(iN_c\pi) = (-1)^{N_c}$. It is gauge invariant if N_c is even, but not if N_c is odd. This agrees with the determination of the SU(2) anomaly at the quark level [3]. For under H, the right-handed quarks are singlets. The left-handed quarks consist of one singlet and one doublet per color, so the number of doublets equals N_c . The argument of ref. [3] shows at the quark level that the effective action transforms under W as $(-1)^{N_c}$.

Finally, let us make the following remark, which apart from its intrinsic interest will be useful elsewhere [9]. Consider $SU(3)_L \times SU(3)_R$ currents defined at the quark level as

$$J_{\mu L}^{a} = \bar{q} \lambda^{a} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) q, \qquad J_{\mu R}^{a} = \bar{q} \lambda^{a} \gamma_{\mu} \frac{1}{2} (1 + \gamma_{5}) q.$$
(27)

By analogy with eq. (17), the proper sigma model description of these currents contains pieces

$$J_{\rm L}^{\mu a} = \frac{N_{\rm c}}{48\pi^2} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \lambda^a U_{\nu \rm L} U_{\alpha \rm L} U_{\beta \rm L},$$
$$J_{\rm R}^{\mu a} = \frac{N_{\rm c}}{48\pi^2} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \lambda^a U_{\nu \rm R} U_{\alpha \rm R} U_{\beta \rm R}, \qquad (28)$$

corresponding (via Noether's theorem) to the addition to the lagrangian of $N_c\Gamma$. In this discussion, the λ^a should be traceless SU(3) generators. However, let us try to construct an anomalous baryon number current in the same way. We define the baryon number of a quark (whether left-handed or right-handed) to be $1/N_c$, so that an ordinary baryon made from N_c quarks has baryon number one. Replacing λ^a by $1/N_c$, but including contributions of both left-handed and right-handed quarks, the anomalous baryon-number current would be

$$J^{\mu} = \frac{1}{24\pi^2} \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U.$$
 (29)

One way to see that this is the proper, and properly normalized, formula is to consider gauging an arbitrary subgroup not of $SU(3)_L \times SU(3)_R$ but of $SU(3)_L \times SU(3)_R \times U(1)$, U(1) being baryon number. The gauging of U(1) is accomplished by adding a Noether coupling $-eJ^{\mu}B_{\mu}$ plus whatever higher-order terms may be required by gauge invariance. (B_{μ} is a U(1) gauge field which may be coupled as well to some $SU(3)_L \times SU(3)_R$ generator.) With J^{μ} defined in (29), this leads to a generalization of $\tilde{\Gamma}$ that properly reflects anomalous diagrams involving the baryon-number current (for instance, it properly incorporates the anomaly in the baryon number $SU(2)_L - SU(2)_L$ triangle that leads to baryon non-conservation by instantons in the standard weak interaction model). Eq. (29) may also be extracted from QCD by methods of Goldstone and Wilczek [10].

References

- [1] J. Wess and B. Zumino, Phys. Lett. 37B (1971) 95
- [2] S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett. 48 (1982) 975; Ann. of Phys. 140 (1982) 372
- [3] E. Witten, Phys. Lett. 117B (1982) 324
- [4] A.P. Balachandran, V.P. Nair and C.G. Trahern, Syracuse University preprint SU-4217-205 (1981)
- [5] R. Bott and R. Seeley, Comm. Math. Phys. 62 (1978) 235
- [6] S.L. Adler, Phys. Rev. 177 (1969) 2426;
 J.S. Bell and R. Jackiw, Nuovo Cim. 60 (1969) 147;
 W.A. Bardeen, Phys. Rev. 184 (1969) 1848
- [7] S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517;
 R. Aviv and A. Zee, Phys. Rev. D5 (1972) 2372
 S.L. Adler, B.W. Lee, S.B. Treiman and A. Zee, Phys. Rev. D4 (1971) 3497
- [8] D.J. Gross and R. Jackiw, Phys. Rev. D6 (1972) 477
- [9] E. Witten, Nucl. Phys. B223 (1983) 433
- [10] J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47 (1981) 986