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A new mathematical framework for the Wess-Zumino chiral effective action is described. It is
shown that this action obeys an a priori quantization law, analogous to Dirac’s quantization of
magnetic change. It incorporates in current algebra both perturbative and non-perturbative
anomalies.

The purpose of this paper is to clarify an old but relatively obscure aspect of
current algebra: the Wess-Zumino effective lagrangian [1] which summarizes the
effects of anomalies in current algebra. As we will see, this effective lagrangian has
unexpected analogies to some 2 + 1 dimensional models discussed recently by Deser
et al. [2] and to a recently noted SU(2) anomaly [3]. There also are connections with
work of Balachandran et al. [4].

For definiteness we will consider a theory with SU(3); X SU(3)g symmetry
spontaneously broken down to the diagonal SU(3). We will ignore explicit symme-
try-breaking perturbations, such as quark bare masses. With SU(3); X SU(3)y
broken to diagonal SU(3), the vacuum states of the theory are in one to one
correspondence with points in the SU(3) manifold. Correspondingly, the low-energy
dynamics can be conveniently described by introducing a field U(x*) that trans-
forms in a so-called non-linear realization of SU(3); X SU(3)g. For each space-time
point x%, U(x®) is an element of SU(3): a 3 X 3 unitary matrix of determinant one.
Under an SU(3); X SU(3)g transformation by unitary matrices (A4, B), U trans-
forms as U —> AUB™".

The effective lagrangian for U must have SU(3); X SU(3)g symmetry, and, to
describe correctly the low-energy limit, it must have the smallest possible number of
derivatives. The unique choice with only two derivatives is

P = ,—‘6F,3fd4xTr aUIU ", (1)
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where experiment indicates F, = 190 MeV. The perturbative expansion of U is

.8
U=1+§2,i DN (2)

T og=1

where A* (normalized so Tr AN\’ = 289%) are the SU(3) generators and 7¢ are the
Goldstone boson fields.

This effective lagrangian is known to incorporate all relevant symmetries of QCD.
All current algebra theorems governing the extreme low-energy limit of Goldstone
boson S-matrix elements can be recovered from the tree approximation to it. What is
less well known, perhaps, is that (1) possesses an extra discrete symmetry that is not
a symmetry of QCD.

The lagrangian (1) is invariant under U & U, In terms of pions this is 7° & 7°,
77 77, it is ordinary charge conjugation. (1) is also invariant under the naive
parity operation x © —x, tot, Ue U. We will call this P,. And finally, (1) is
invariant under U < U~!. Comparing with eq. (2), we see that this latter operation is
equivalent to 7 «» —7% a=1,..., 8. This is the operation that counts modulo two
the number of bosons, Ny, so we will call it (— 1)™s,

Certainly, (— 1)"® is not a symmetry of QCD. The problem is the following. QCD
is parity invariant only if the Goldstone bosons are treated as pseudoscalars. The
parity operation in QCD corresponds to x < —x, t< ¢, Uo U . This is P=
P,(—1)Me. QCD is invariant under P but not under P, or (— 1)"» separately. The
simplest process that respects all bona fide symmetries of QCD but violates P, and
(- is KK~ - 7*7%~ (note that the ¢ meson decays to both K*K~ and
7t 7% 7). It is natural to ask whether there is a simple way to add a higher-order
term to (1) to obtain a lagrangian that obeys only the appropriate symmetries.

The Euler-Lagrangian equation derived from (1) can be written

3,(+F2U'9,U)=0. (3)

Let us try to add a suitable extra term to this equation. A Lorentz-invariant term
that violates P, must contain the Levi-Civita symbol ¢,,,q. In the spirit of current
algebra, we wish a term with the smallest possible number of derivatives, since, in
the low-energy limit, the derivatives of U are small. There is a unique Py-violating
term with only four derivatives. We can generalize (3) to

3,(3F2U1 U ) + e =BU~ (U )U(3,U)U(3,U)U ' (3,U) =0, (4)

A being a constant. Although it violates Py, (4) can be seen to respect P = Py(— 1)Vs.

Can eq. (4) be derived from a lagrangian? Here we find trouble. The only
pseudoscalar of dimension four would seem to be e**ATr U~ '(3,U)- U~ "(3,U)U !
(3 UYUY( dgU), but this vanishes, by antisymmetry of ¢*”* and cyclic symmetry of
the trace. Nevertheless, as we will see, there is a lagrangian.



424 E. Witten / Global aspects of current algebra

Let us consider a simple problem of the same sort. Consider a particle of mass m
constrained to move on an ordinary two-dimensional sphere of radius one. The
lagrangian is £ = 4m/ drx}? and the equation of motion is mx, + mx, (L, x?) = 0; the
constraint is Lx? = 1. This system respects the symmetries ¢ <& —¢ and separately
x,o —x;. If we want an equation that is only invariant under the combined
operation ¢t & —t, x; © x,, the simplest choice is

m)'c'i+mx,-(2)'c,%)=ae,-jkxjxk, (5)
k
where « is a constant. To derive this equation from a lagrangian is again trouble-
some. There is no obvious term whose variation equals the right-hand side (since
& ik X;X; %, = 0).

However, this problem has a well-known solution. The right-hand side of (5) can
be understood as the Lorentz force for an electric charge interacting with a magnetic
monopole located at the center of the sphere. Introducing a vector potential 4 such
that v X 4 = x/|x|, the action for our problem is

I= [(3mi?+adx,)dr. (6)

This lagrangian is problematical because 4, contains a Dirac string and certainly
does not respect the symmetries of our problem. To explore this quantum mechani-
cally let us consider the simplest form of the Feynman path integral, Tre Al =
fdx,(¢t)e”’. In e’ the troublesome term is

exp(iaj;Aidxi) , (7)

where the integration goes over the particle orbit y: a closed orbit if we discuss the
simplest object Tre A,

By Gauss’s law we can eliminate the vector potential from (7) in favor of the
magnetic field. In fact, the closed orbit y of fig. 1a is the boundary of a disc D, and
by Gauss’s law we can write (7) in terms of the magnetic flux through D:

exp(iafA,dxi) = exp(iafDF,jdE’j) . (8)
Y

The precise mathematical statement here is that since 7,(S?) = 0, the circle y in S? is
the boundary of a disc D (or more exactly, a mapping y of a circle into S? can be
extended to a mapping of a disc into S?).

The right-hand side of (8) is manifestly well defined, unlike the left-hand side,
which suffers from a Dirac string. We could try to use the right-hand side of (8) in a
Feynman path integral. There is only one problem: D isn’t unique. The curve y also
bounds the disc D’ (fig. 1¢). There is no consistent way to decide whether to choose



E. Witten / Global aspects of current algebra 425

(a) (b) (c)
Fig. 1. A particle orbit y on the two-sphere (part (a)) bounds the discs D (part (b)) and D’ (part (c)).

D or D’ (the curve y could continuously be looped around the sphere or turned
inside out). Working with D’ we would get

exp|ia | A;dx'|=exp| —ia | F,,dZV|, (9)
Y i D J

where a crucial minus sign on the right-hand side of (9) appears because y bounds D
in a right-hand sense, but bounds D’ in a left-hand sense. If we are to introduce the
right-hand side of (8) or (9) in a Feynman path integral, we must require that they
be equal. This is equivalent to

1=exp(iaf Edeif). (10)
D+D’

Since D + D’ is the whole two sphere S?, and [s2F;;dZ" = 4, (10) is obeyed if and
only if a is an integer or half-integer. This is Dirac’s quantization condition for the
product of electric and magnetic charges.

Now let us return to our original problem. We imagine space-time to be a very
large four-dimensional sphere M. A given non-linear sigma model field U is a
mapping of M into the SU(3) manifold (fig. 2a). Since 7, (SU(3)) = 0, the four-sphere
in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q.

By analogy with the previous problem, let us try to find some object that can be
integrated over Q to define an action functional. On the SU(3) manifold there is a
unique fifth rank antisymmetric tensor w,;,,, that is invariant under SU(3); X
SU(3)r*. Analogous to the right-hand side of eq. (8), we define

r =wi,.jk,md2ff’<’f". (11)

* Let us first try to define w at U= 1; it can then be extended to the whole SU(3) manifold by an
SU@3); X SUQB)g transformation. At U= 1, « must be invariant under the diagonal subgroup of
SU3) X SU(3)g that leaves fixed U = 1. The tangent space to the SU(3) manifold at U/ =1 can be
identified with the Lie algebra of SU(3). So w, at U = 1, defines a fifth-order antisymmetric invariant
in the SU(3) Lie algebra. There is only one such invariant. Given five SU(3) generators 4, B, C, D
and E, the one such invariant is Tr ABCDE — Tr BACDE + permutations. The SU(3); x SU(3)gx
invariant « so defined has zero curl (34w, + permutations =0) and for this reason (11) is
invariant under infinitesimal variations of Q; there arises only the topological problem discussed in
the text.
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G Q Q

(a) (b) (c)

Fig. 2. Space-time, a four-sphere, is mapped into the SU(3) manifold. In part (a), space-time is
symbolically denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds
the discs Q and Q'. The SU(3) manifold is symbolized in these sketches by the interior of the oblong.

As before, we hope to include exp(iI') in a Feynman path integral. Again, the
problem is that Q is not unique. Our four-sphere M is also the boundary of another
five-disc Q’ (fig. 2¢). If we let

r=- fQ Wy (12)

(with, again, a minus sign because M bounds Q’ with opposite orientation) then we
must require exp(iI') = exp(i[) or equivalently [q, ok, =™ =27 - integer.
Since Q + Q' is a closed five-dimensional sphere, our requirement is

fwijk,m dZvUkim = 3 - integer,
s

for any five-sphere S in the SU(3) manifold.

We thus need the topological classification of mappings of the five-sphere into
SU(3). Since 75(SU(3)) = Z, every five sphere in SU(3) is topologically a multiple of
a basic five sphere S,. We normalize « so that

/ @ i AV =2, (13)
So
and then (with I in eq. (11)) we may work with the action
I=%F? [d*xTro,Ua,U™" +nl, (14)

where n is an arbitrary integer. I' is, in fact, the Wess-Zumino lagrangian. Only the a
priori quantization of n is a new result.
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The identification of S, and the proper normalization of w is a subtle mathemat-
cal problem. The solution involves a factor of two from the Bott periodicity theorem.
Without abstract notation, the result [5] can be stated as follows. Let y*, i=1...5 be
coordinates for the disc Q. Then on Q (where we need it)

i jhim — L g zikim TrU"—a—U_U"ﬂU*I_(ﬂUrl_agU—l al{n
J 24072 ay ay’ ayk 3)/[ E

(15)

dzijk[m W

The physical consequences of this can be made more transparent as follows. From
eq. (2),

U”[’),.U=%l-3iA+O(A2), where 4 = ZN7 . (16)
So
;g A Z KM = #dzﬁ“m Trd,A9,A3, 49,49, 4+0(A4°%)
™ ko
T 22F5 dZkm g (Tr49,49,49,49,A4)+0(A°).
™ m

SO foW; jkimdZY¥/™ is (to order 4° and in fact also in higher orders) the integral of a
total divergence which can be expressed by Stokes’ theorem as an integral over the
boundary of Q. By construction, this boundary is precisely space-time. We have,
then,

2
1572F?

nl=n ] d*x e FTr 49,4 9,4 3,49, 4 + higher order terms. (17)

In a hypothetical world of massless kaons and pions, this effective lagrangian
rigorously describes the low-energy limit of K*K™— #*#% ~*. We reach the
remarkable conclusion that in any theory with SU(3) X SU(3) broken to diagonal
SU(3), the low-energy limit of the amplitude for this reaction must be (in units given
in (17)) an integer.

What is the value of this integer in QCD? Were s to vanish, the practical interest
of our discussion would be greatly reduced. It turns out that if N, is the number of
colors (three in the real world) then n = N,. The simplest way to deduce this is a

* Our formula should agree for n =1 with formulas of ref. [1], as later equations make clear. There
appears to be a numerical error on p. 97 of ref. [1] (¢ instead of &).
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procedure that is of interest anyway, viz. coupling to electromagnetism, so as to
describe the low-energy dynamics of Goldstone bosons and photons.
Let

Wit

(-}
I
|
wl—

w—

be the usual electric charge matrix of quarks. The functional I is invariant under
global charge rotations, U — U+ ig[Q,U], where ¢ is a constant. We wish to
promote this to a local symmetry, U — U+ ig(x)[Q, U], where ¢(x) is an arbitrary
function of x. It is necessary, of course, to introduce the photon field A, which
transforms as 4, = 4, — (1/¢€)d,¢; eis the charge of the proton.

Usually a global symmetry can straightforwardly be gauged by replacing deriva-
tives by covariant derivatives, d, > D, = d, + ied,. In the case at hand, I" is not
given as the integral of a manifestly SU(3); X SU(3)y invariant expression, so the
standard road to gauging global symmetries of I is not available. One can still resort
to the trial and error Noether method, widely used in supergravity. Under a local
charge rotation, one finds I' - I' — [ d*x d,eJ* where

JH=

yroe e B Te[Q(9,U U ") (9,UU ") (auU)

ro(u o) v o) (U aw)]. ()

is the extra term in the electromagnetic current required (from Noether’s theorem)
due to the addition of I' to the lagrangian. The first step in the construction of an
invariant lagrangian is to add the Noether coupling, I' > I" =T —ef d*x 4,J*(x).
This expression is still not gauge invariant, because J* is not, but by trial and error
one finds that by adding an extra term one can form a gauge invariant functional

r =I(U dix A o+ € (g8 mab(g A,)A
(U, 4,)=TI( )—ef xA, +24772f X e LA4,)A,
XTt[Q*(8U)U~" + QU™ (3,U) + QUQU~(3,U)U~']. (19)
Our gauge invariant lagrangian will then be
€= 5F? [d*xTrDUDU ' +n. (20)

What value of the integer n will reproduce QCD results?
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Here we find a surprise. The last term in (18) has a piece that describes 7° — yy.
Expanding U and integrating by parts, (18) has a piece

4= ne’
487 °F,

Woe””“BF,“,FaB. (21)

This agrees with the result from QCD triangle diagrams [6] if n = N, the number of
colors. The Noether coupling —eA,J* describes, among other things, a yat O
vertex

B=— %ieﬂ;;ﬂ e P4, 0,m* I m Bpm®. (22)
Again this agrees with calculations [7] based on the QCD VAAA anomaly if n = N,.
The effective action ch’ (first constructed in another way by Wess and Zumino)
precisely describes all effects of QCD anomalies in low-energy processes with
photons and Goldstone bosons.

It is interesting to try to gauge subgroups of SU(3); X SU(3); other than
electromagnetism. One may have in mind, for instance, applications to the standard
weak interaction model. In general, one may try to gauge an arbitrary subgroup H of
SU(3) X SU(3)g, with generators K°, o = 1...r. Each K? is a linear combination of
generators Ty and Tg of SU(3), and SU(3)y, K° = T7 + Tg. (Either T or T§ may
vanish for some values of ¢.) For any space-time dependent functions &°(x), let
e, =L, I7€%(x), eg =L, Tre’(x). We want an action with local invariance under
U— U+i(e (x)U— Ueg(x)).

Naturally, it is necessary to introduce gauge fields 4;(x), transforming as A;(x)
= A (x)—(1/e,) d,&° + f°e’A} where e, is the coupling constant corresponding to
the generator K°, and f°™ are the structure constants of H. It is useful to define
A, =T, e, AITY, Ay =T e, ATTR.

We have already seen that I' incorporates the effects of anomalies, so it is not very
surprising that a generalization of I' that is gauge invariant under H exists only if H
is a so-called anomaly-free subgroup of SU(3); X SU(3)y. Specifically, one finds
that H can be gauged only if for each o,

Tr(Tg)’ = Tr(T3)’, (23)

which is the usual condition for cancellation of anomalies at the quark level.

If (23) is obeyed, a gauge invariant generalization of I' can be constructed
somewhat tediously by trial and error. It is useful to define U,; = (9,U)U"! and
Uxr = U '8,U. The gauge invariant functional then turns out to be

N 1
I(4,,U)=T(U)+ yro [dtxer=tz,, .
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where

Z vaf = _Tr[A;LLl]VLUaL(J,BL + (L - R)]

"
+ITe[(3,4,0) Aur + A,.(3,400) [ Upe + (L > R)]
+iTt[ (8,4, )U Aoy 35U+ A4,,U"(8,4,5) U]
= 3iTr( 4, U, AUy — (L= R))
+iTt| Ay UA,g U™ Uy Upy — Ao U™ A, UU g Upg |
~Te[[(9,4,0) Au + 4,2 (8,4,0)| U~ 45 U
~[(8,A,) Aup + 4, (3,4,1) | UAgp U]
~Tt[ AU~ A, UA g Upg + A,  UA,g U™ "4, Uy |
—Tr[ A, 4,1 U(8,Ap )U ™" + A A, U™ (8,45, ) U]
—iTr| Ay Ay AU Ay U— Ay Ay Ay UAg U™
+34,1 A, UA g AgrU ™" + S A4,U "4, UA U™ "4 U] (24)

If eq. (22) for cancellation of anomalies is not obeyed, then the variation of I" under
a gauge transformation does not vanish but is

- 1 .
o= — Y d*x e B Tr eL[(aﬂA,,L)(aaABL) —3i0,(A,1 A, A )]

—(L->R), (25)

in agreement with computations at the quark level [8] of the anomalous variation of
the effective action under a gauge transformation.

Thus, I' incorporates all information usually associated with triangle anomalies,
including the restriction on what subgroups H of SU(3); X SU(3); can be gauged.
However, there is another potential obstruction to the ability to gauge a subgroup of
SU(3) X SU(3)g. This is the non-perturbative anomaly {3] associated with =,(H). Is
this anomaly, as well, implicit in I'? In fact, it is.

Let H be an SU(2) subgroup of SU(3),, chosen so that an SU(2) matrix W is
embedded in SU(3), as

d
W | 0].

0011

W=
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This subgroup is free of triangle anomalies, so the functional I" of eq. (23) is
invariant under infinitesimal local H transformations.

However, is I" invariant under H transformations that cannot be reached continu-
ously? Since 7,(SU(2)) = Z,, there is one non-trivial homotopy class of SU(2) gauge
transformations. Let W be an SU(2) gauge transformation in this non-trivial class.
Under W, I may at most be shifted by a constant, independent of U and A,
because 81" /8U and 8F/8A are gauge-covariant local functionals of U and 4,,. Also
I is invariant under W2, since W2 is equivalent to the identity in 7,(SU(2)), and we
know I is invariant under topologically trivial gauge transformations. This does not
quite mean that I" is invariant under W. Since I is only defined modulo 2, the fact
that I is invariant under W? leaves two possibilities for how I" behaves under W. It
may be invariant, or it may be shifted by .

To choose between these alternatives, it is enough to consider a special case. For
instance, it suffices to evaluate A = I'(U = 1, A, =0)— rw=w, A,

ie”'(3,W)W™"). It is not difficult to see that in this case the complicated terms
1nvolvmg e‘“‘“BZ vap Vanish, soin fact A=I(U=1)-I'(U= W). A detailed calcula-
tion shows that

r(U=1)-r(U=w)=ax. (26)

This calculation has some other interesting applications and will be described
elsewhere [9].

The Feynman path integral, which contains a factor exp(iN,I'), hence picks up
under W a factor exp(iN,7) = (—1)™-. It is gauge invariant if N, is even, but not if N,
is odd. This agrees with the determination of the SU(2) anomaly at the quark level
[3]. For under H, the right-handed quarks are singlets. The left-handed quarks
consist of one singlet and one doublet per color, so the number of doublets equals
N,. The argument of ref. {3] shows at the quark level that the effective action
transforms under W as (— 1),

Finally, let us make the following remark, which apart from its intrinsic interest
will be useful elsewhere [9]. Consider SU(3); X SU(3), currents defined at the quark
level as

=gNy3(1-vs)q,  JR=a\v3(1 +v)q. (27)

By analogy with eq. (17), the proper sigma model description of these currents
contains pieces

N
Jt = 8;2 e *PTr XU, U Upe,
na _ NC nraf a
JR = S &P T MU g U Upr (28)

87
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corresponding (via Noether’s theorem) to the addition to the lagrangian of N.I". In
this discussion, the A% should be traceless SU(3) generators. However, let us try to
construct an anomalous baryon number current in the same way. We define the
baryon number of a quark (whether left-handed or right-handed) to be 1/N_, so that
an ordinary baryon made from N, quarks has baryon number one. Replacing A\* by
1/N,, but including contributions of both left-handed and right-handed quarks, the
anomalous baryon-number current would be

e =

ey e FTr U~ ' aU U UU ' 3,U. (29)
m

One way to see that this is the proper, and properly normalized, formula is to
consider gauging an arbitrary subgroup not of SU(3), X SU(3) but of SU(3); X
SU(3)x x U(1), U(1) being baryon number. The gauging of U(1) is accomplished by
adding a Noether coupling —e/"B, plus whatever higher-order terms may be
required by gauge invariance. (B, is a U(1) gauge field which may be coupled as well
to some SU(3), X SU(3)g generator.) With J#* defined in (29), this leads to a
generalization of I" that properly reflects anomalous diagrams involving the baryon-
number current (for instance, it properly incorporates the anomaly in the baryon
number SU(2); — SU(2), triangle that leads to baryon non-conservation by instan-
tons in the standard weak interaction model). Eq. (29) may also be extracted from
QCD by methods of Goldstone and Wilczek [10].
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