GLOBAL ASPECTS OF CURRENT ALGEBRA

Edward WITTEN*
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 4 March 1983

Abstract

A new mathematical framework for the Wess-Zumino chiral effective action is described. It is shown that this action obeys an a priori quantization law, analogous to Dirac's quantization of magnetic change. It incorporates in current algebra both perturbative and non-perturbative anomalies.

The purpose of this paper is to clarify an old but relatively obscure aspect of current algebra: the Wess-Zumino effective lagrangian [1] which summarizes the effects of anomalies in current algebra. As we will see, this effective lagrangian has unexpected analogies to some $2+1$ dimensional models discussed recently by Deser et al. [2] and to a recently noted $\operatorname{SU}(2)$ anomaly [3]. There also are connections with work of Balachandran et al. [4].

For definiteness we will consider a theory with $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ symmetry spontaneously broken down to the diagonal $\mathrm{SU}(3)$. We will ignore explicit symme-try-breaking perturbations, such as quark bare masses. With $\operatorname{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}}$ broken to diagonal $S U(3)$, the vacuum states of the theory are in one to one correspondence with points in the $\mathrm{SU}(3)$ manifold. Correspondingly, the low-energy dynamics can be conveniently described by introducing a field $U\left(x^{\alpha}\right)$ that transforms in a so-called non-linear realization of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$. For each space-time point $x^{\alpha}, U\left(x^{\alpha}\right)$ is an element of $\mathrm{SU}(3)$: a 3×3 unitary matrix of determinant one. Under an $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ transformation by unitary matrices $(A, B), U$ transforms as $U \rightarrow A U B^{-1}$.

The effective lagrangian for U must have $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ symmetry, and, to describe correctly the low-energy limit, it must have the smallest possible number of derivatives. The unique choice with only two derivatives is

$$
\begin{equation*}
\mathfrak{L}=\frac{1}{16} F_{\pi}^{2} \int \mathrm{~d}^{4} x \operatorname{Tr} \partial_{\mu} U \partial_{\mu} U^{-1} \tag{1}
\end{equation*}
$$

[^0]where experiment indicates $F_{\pi} \simeq 190 \mathrm{MeV}$. The perturbative expansion of U is
\[

$$
\begin{equation*}
U=1+\frac{2 i}{F_{\pi}} \sum_{a=1}^{8} \lambda^{a} \pi^{a}+\cdots, \tag{2}
\end{equation*}
$$

\]

where λ^{a} (normalized so $\operatorname{Tr} \lambda^{a} \lambda^{b}=2 \delta^{a b}$) are the $\operatorname{SU}(3)$ generators and π^{a} are the Goldstone boson fields.

This effective lagrangian is known to incorporate all relevant symmetries of QCD. All current algebra theorems governing the extreme low-energy limit of Goldstone boson S-matrix elements can be recovered from the tree approximation to it. What is less well known, perhaps, is that (1) possesses an extra discrete symmetry that is not a symmetry of QCD.

The lagrangian (1) is invariant under $U \leftrightarrow U^{\mathrm{T}}$. In terms of pions this is $\pi^{0} \leftrightarrow \pi^{0}$, $\pi^{+} \leftrightarrow \pi^{-}$; it is ordinary charge conjugation. (1) is also invariant under the naive parity operation $x \leftrightarrow-x, t \leftrightarrow t, U \leftrightarrow U$. We will call this P_{0}. And finally, (1) is invariant under $U \leftrightarrow U^{-1}$. Comparing with eq. (2), we see that this latter operation is equivalent to $\pi^{a} \leftrightarrow-\pi^{a}, a=1, \ldots, 8$. This is the operation that counts modulo two the number of bosons, N_{B}, so we will call it $(-1)^{N_{\mathrm{B}}}$.

Certainly, $(-1)^{N_{\mathrm{B}}}$ is not a symmetry of QCD. The problem is the following. QCD is parity invariant only if the Goldstone bosons are treated as pseudoscalars. The parity operation in QCD corresponds to $\boldsymbol{x} \leftrightarrow-\boldsymbol{x}, t \leftrightarrow t, U \leftrightarrow U^{-1}$. This is $P=$ $P_{0}(-1)^{N_{\mathrm{B}}}$. QCD is invariant under P but not under P_{0} or $(-1)^{N_{\mathrm{B}}}$ separately. The simplest process that respects all bona fide symmetries of QCD but violates P_{0} and $(-1)^{N_{\mathrm{B}}}$ is $\mathrm{K}^{+} \mathrm{K}^{-} \rightarrow \pi^{+} \pi^{0} \pi^{-}$(note that the ϕ meson decays to both $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{0} \pi^{-}$). It is natural to ask whether there is a simple way to add a higher-order term to (1) to obtain a lagrangian that obeys only the appropriate symmetries.

The Euler-Lagrangian equation derived from (1) can be written

$$
\begin{equation*}
\partial_{\mu}\left(\frac{1}{8} F_{\pi}^{2} U^{-1} \partial_{\mu} U\right)=0 \tag{3}
\end{equation*}
$$

Let us try to add a suitable extra term to this equation. A Lorentz-invariant term that violates P_{0} must contain the Levi-Civita symbol $\varepsilon_{\mu \nu \alpha \beta}$. In the spirit of current algebra, we wish a term with the smallest possible number of derivatives, since, in the low-energy limit, the derivatives of U are small. There is a unique P_{0}-violating term with only four derivatives. We can generalize (3) to

$$
\begin{equation*}
\partial_{\mu}\left(\frac{1}{8} F_{\pi}^{2} U^{-1} \partial_{\mu} U\right)+\lambda \varepsilon^{\mu \nu \alpha \beta} U^{-1}\left(\partial_{\mu} U\right) U^{-1}\left(\partial_{\nu} U\right) U^{-1}\left(\partial_{\alpha} U\right) U^{-1}\left(\partial_{\beta} U\right)=0 \tag{4}
\end{equation*}
$$

λ being a constant. Although it violates P_{0}, (4) can be seen to respect $P=P_{0}(-1)^{N_{\mathrm{B}}}$.
Can eq. (4) be derived from a lagrangian? Here we find trouble. The only pseudoscalar of dimension four would seem to be $\varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} U^{-1}\left(\partial_{\mu} U\right) \cdot U^{-1}\left(\partial_{\nu} U\right) U^{-1}$ $\left(\partial_{\alpha} U\right) U^{-1}\left(\partial_{\beta} U\right)$, but this vanishes, by antisymmetry of $\varepsilon^{\mu \nu \alpha \beta}$ and cyclic symmetry of the trace. Nevertheless, as we will see, there is a lagrangian.

Let us consider a simple problem of the same sort. Consider a particle of mass m constrained to move on an ordinary two-dimensional sphere of radius one. The lagrangian is $\mathcal{L}=\frac{1}{2} m \int \mathrm{~d} t \dot{x}_{i}^{2}$ and the equation of motion is $m \ddot{x}_{i}+m x_{i}\left(\sum_{k} \dot{x}_{k}^{2}\right)=0$; the constraint is $\sum x_{i}^{2}=1$. This system respects the symmetries $t \leftrightarrow-t$ and separately $x_{i} \leftrightarrow-x_{i}$. If we want an equation that is only invariant under the combined operation $t \leftrightarrow-t, x_{i} \leftrightarrow x_{i}$, the simplest choice is

$$
\begin{equation*}
m \ddot{x}_{i}+m x_{i}\left(\sum_{k} \dot{x}_{k}^{2}\right)=\alpha \varepsilon_{i j k} x_{j} \dot{x}_{k}, \tag{5}
\end{equation*}
$$

where α is a constant. To derive this equation from a lagrangian is again troublesome. There is no obvious term whose variation equals the right-hand side (since $\varepsilon_{i j k} x_{i} x_{j} \dot{x}_{k}=0$).

However, this problem has a well-known solution. The right-hand side of (5) can be understood as the Lorentz force for an electric charge interacting with a magnetic monopole located at the center of the sphere. Introducing a vector potential \boldsymbol{A} such that $\nabla \times \boldsymbol{A}=\boldsymbol{x} /|x|^{3}$, the action for our problem is

$$
\begin{equation*}
I=\int\left(\frac{1}{2} m \dot{x}_{i}^{2}+\alpha A_{i} \dot{x}_{i}\right) \mathrm{d} t \tag{6}
\end{equation*}
$$

This lagrangian is problematical because A_{i} contains a Dirac string and certainly does not respect the symmetries of our problem. To explore this quantum mechanically let us consider the simplest form of the Feynman path integral, $\mathrm{Tr}^{-\beta H}=$ $\int \mathrm{d} x_{i}(t) \mathrm{e}^{-I}$. In e^{-I} the troublesome term is

$$
\begin{equation*}
\exp \left(i \alpha \int_{\gamma} A_{i} \mathrm{~d} x^{i}\right) \tag{7}
\end{equation*}
$$

where the integration goes over the particle orbit γ : a closed orbit if we discuss the simplest object $\operatorname{Tr} \mathrm{e}^{-\beta H}$.

By Gauss's law we can eliminate the vector potential from (7) in favor of the magnetic field. In fact, the closed orbit γ of fig. la is the boundary of a disc D, and by Gauss's law we can write (7) in terms of the magnetic flux through D :

$$
\begin{equation*}
\exp \left(i \alpha \int_{\gamma} A_{i} \mathrm{~d} x^{i}\right)=\exp \left(i \alpha \int_{\mathrm{D}} F_{i j} \mathrm{~d} \Sigma^{i j}\right) \tag{8}
\end{equation*}
$$

The precise mathematical statement here is that since $\pi_{1}\left(\mathrm{~S}^{2}\right)=0$, the circle γ in S^{2} is the boundary of a disc D (or more exactly, a mapping γ of a circle into S^{2} can be extended to a mapping of a disc into S^{2}).

The right-hand side of (8) is manifestly well defined, unlike the left-hand side, which suffers from a Dirac string. We could try to use the right-hand side of (8) in a Feynman path integral. There is only one problem: D isn't unique. The curve γ also bounds the disc D^{\prime} (fig. 1c). There is no consistent way to decide whether to choose

Fig. 1. A particle orbit γ on the two-sphere (part (a)) bounds the discs D (part (b)) and D^{\prime} (part (c)).

D or D^{\prime} (the curve γ could continuously be looped around the sphere or turned inside out). Working with D^{\prime} we would get

$$
\begin{equation*}
\exp \left(i \alpha \int_{\gamma} A_{i} \mathrm{~d} x^{i}\right)=\exp \left(-i \alpha \int_{\mathrm{D}^{\prime}} F_{i j} \mathrm{~d} \Sigma^{i j}\right), \tag{9}
\end{equation*}
$$

where a crucial minus sign on the right-hand side of (9) appears because γ bounds D in a right-hand sense, but bounds D^{\prime} in a left-hand sense. If we are to introduce the right-hand side of (8) or (9) in a Feynman path integral, we must require that they be equal. This is equivalent to

$$
\begin{equation*}
1=\exp \left(i \boldsymbol{\alpha} \int_{\mathrm{D}+\mathrm{D}^{\prime}} F_{i j} \mathrm{~d} \Sigma^{i j}\right) . \tag{10}
\end{equation*}
$$

Since $\mathrm{D}+\mathrm{D}^{\prime}$ is the whole two sphere S^{2}, and $\int_{\mathrm{S}^{2}} F_{i j} \mathrm{~d} \Sigma^{i j}=4 \pi$, (10) is obeyed if and only if α is an integer or half-integer. This is Dirac's quantization condition for the product of electric and magnetic charges.

Now let us return to our original problem. We imagine space-time to be a very large four-dimensional sphere M . A given non-linear sigma model field U is a mapping of M into the $S U(3)$ manifold (fig. 2a). Since $\pi_{4}(S U(3))=0$, the four-sphere in $S U(3)$ defined by $U(x)$ is the boundary of a five-dimensional disc Q.

By analogy with the previous problem, let us try to find some object that can be integrated over Q to define an action functional. On the $\operatorname{SU(3)}$ manifold there is a unique fifth rank antisymmetric tensor $\omega_{i j k / m}$ that is invariant under $\mathrm{SU}(3)_{\mathrm{L}} \times$ $\mathrm{SU}(3)_{\mathrm{R}}{ }^{\star}$. Analogous to the right-hand side of eq. (8), we define

$$
\begin{equation*}
\Gamma=\int_{\mathrm{Q}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m} \tag{11}
\end{equation*}
$$

[^1]

Fig. 2. Space-time, a four-sphere, is mapped into the $\mathrm{SU}(3)$ manifold. In part (a), space-time is symbolically denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds the discs Q and Q^{\prime}. The $S U(3)$ manifold is symbolized in these sketches by the interior of the oblong.

As before, we hope to include $\exp (i \Gamma)$ in a Feynman path integral. Again, the problem is that Q is not unique. Our four-sphere M is also the boundary of another five-disc Q^{\prime} (fig. 2c). If we let

$$
\begin{equation*}
\Gamma^{\prime}=-\int_{\mathbf{Q}^{\prime}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m}, \tag{12}
\end{equation*}
$$

(with, again, a minus sign because M bounds Q^{\prime} with opposite orientation) then we must require $\exp (i \Gamma)=\exp \left(i \Gamma^{\prime}\right)$ or equivalently $\int_{\mathrm{Q}+\mathrm{Q}^{\prime}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m}=2 \pi \cdot$ integer. Since $Q+Q^{\prime}$ is a closed five-dimensional sphere, our requirement is

$$
\int_{\mathrm{S}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m}=2 \pi \cdot \text { integer }
$$

for any five-sphere S in the $S U(3)$ manifold.
We thus need the topological classification of mappings of the five-sphere into $\operatorname{SU}(3)$. Since $\pi_{5}(\mathrm{SU}(3))=\mathrm{Z}$, every five sphere in $\mathrm{SU}(3)$ is topologically a multiple of a basic five sphere S_{0}. We normalize ω so that

$$
\begin{equation*}
\int_{S_{0}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m}=2 \pi \tag{13}
\end{equation*}
$$

and then (with Γ in eq. (11)) we may work with the action

$$
\begin{equation*}
I=\frac{1}{16} F_{\pi}^{2} \int \mathrm{~d}^{4} x \operatorname{Tr} \partial_{\mu} U \partial_{\mu} U^{-1}+n \Gamma \tag{14}
\end{equation*}
$$

where n is an arbitrary integer. Γ is, in fact, the Wess-Zumino lagrangian. Only the a priori quantization of n is a new result.

The identification of S_{0} and the proper normalization of ω is a subtle mathematical problem. The solution involves a factor of two from the Bott periodicity theorem. Without abstract notation, the result [5] can be stated as follows. Let $y^{i}, i=1 \ldots 5$ be coordinates for the disc Q . Then on Q (where we need it)
$\mathrm{d} \Sigma^{i j k l m} \omega_{i j k l m}=-\frac{i}{240 \pi^{2}} \mathrm{~d} \Sigma^{i j k l m}\left[\operatorname{Tr} U^{-1} \frac{\partial U}{\partial y^{i}} U^{-1} \frac{\partial U}{\partial y^{j}} U^{-1} \frac{\partial U}{\partial y^{k}} U^{-1} \frac{\partial U}{\partial y^{l}} U^{-1} \frac{\partial U}{\partial y^{m}}\right]$.

The physical consequences of this can be made more transparent as follows. From eq. (2),

$$
\begin{equation*}
U^{-1} \partial_{i} U=\frac{2 i}{F_{\pi}} \partial_{i} A+\mathrm{O}\left(A^{2}\right), \quad \text { where } A=\Sigma \lambda^{a} \pi^{a} \tag{16}
\end{equation*}
$$

So

$$
\begin{aligned}
\omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m} & =\frac{2}{15 \pi^{2} F_{\pi}^{5}} \mathrm{~d} \Sigma^{i j k l m} \operatorname{Tr} \partial_{i} A \partial_{j} A \partial_{k} A \partial_{l} A \partial_{m} A+\mathrm{O}\left(A^{6}\right) \\
& =\frac{2}{15 \pi^{2} F_{\pi}^{5}} \mathrm{~d} \Sigma^{i j k l m} \partial_{i}\left(\operatorname{Tr} A \partial_{j} A \partial_{k} A \partial_{l} A \partial_{m} A\right)+\mathrm{O}\left(A^{6}\right)
\end{aligned}
$$

So $\int_{\mathrm{Q}} \omega_{i j k l m} \mathrm{~d} \Sigma^{i j k l m}$ is (to order A^{5} and in fact also in higher orders) the integral of a total divergence which can be expressed by Stokes' theorem as an integral over the boundary of Q . By construction, this boundary is precisely space-time. We have, then,

$$
\begin{equation*}
n \Gamma=n \frac{2}{15 \pi^{2} F_{\pi}^{5}} \int \mathrm{~d}^{4} x \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} A \partial_{\mu} A \partial_{\nu} A \partial_{\alpha} A \partial_{\beta} A+\text { higher order terms } \tag{17}
\end{equation*}
$$

In a hypothetical world of massless kaons and pions, this effective lagrangian rigorously describes the low-energy limit of $\mathrm{K}^{+} \mathrm{K}^{-} \rightarrow \pi^{+} \pi^{0} \pi^{-\star}$. We reach the remarkable conclusion that in any theory with $\mathrm{SU}(3) \times \mathrm{SU}(3)$ broken to diagonal $\mathrm{SU}(3)$, the low-energy limit of the amplitude for this reaction must be (in units given in (17)) an integer.

What is the value of this integer in QCD? Were n to vanish, the practical interest of our discussion would be greatly reduced. It turns out that if N_{c} is the number of colors (three in the real world) then $n=N_{c}$. The simplest way to deduce this is a

[^2]procedure that is of interest anyway, viz. coupling to electromagnetism, so as to describe the low-energy dynamics of Goldstone bosons and photons.

Let

$$
Q=\left(\begin{array}{lll}
\frac{2}{3} & & \\
& -\frac{1}{3} & \\
& & -\frac{1}{3}
\end{array}\right)
$$

be the usual electric charge matrix of quarks. The functional Γ is invariant under global charge rotations, $U \rightarrow U+i \varepsilon[Q, U]$, where ε is a constant. We wish to promote this to a local symmetry, $U \rightarrow U+i \varepsilon(x)[Q, U]$, where $\varepsilon(x)$ is an arbitrary function of x. It is necessary, of course, to introduce the photon field A_{μ} which transforms as $A_{\mu} \rightarrow A_{\mu}-(1 / e) \partial_{\mu} \varepsilon ; e$ is the charge of the proton.

Usually a global symmetry can straightforwardly be gauged by replacing derivatives by covariant derivatives, $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i e A_{\mu}$. In the case at hand, Γ is not given as the integral of a manifestly $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ invariant expression, so the standard road to gauging global symmetries of Γ is not available. One can still resort to the trial and error Noether method, widely used in supergravity. Under a local charge rotation, one finds $\Gamma \rightarrow \Gamma-\int \mathrm{d}^{4} x \partial_{\mu} \varepsilon J^{\mu}$ where

$$
\begin{align*}
J^{\mu}=\frac{1}{48 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} & {\left[Q\left(\partial_{\nu} U U^{-1}\right)\left(\partial_{\alpha} U U^{-1}\right)\left(\partial_{\beta} U U^{-1}\right)\right.} \\
& \left.+Q\left(U^{-1} \partial_{\nu} U\right)\left(U^{-1} \partial_{\alpha} U\right)\left(U^{-1} \partial_{\beta} U\right)\right] \tag{18}
\end{align*}
$$

is the extra term in the electromagnetic current required (from Noether's theorem) due to the addition of Γ to the lagrangian. The first step in the construction of an invariant lagrangian is to add the Noether coupling, $\Gamma \rightarrow \Gamma^{\prime}=\Gamma-e \int \mathrm{~d}^{4} x A_{\mu} J^{\mu}(x)$. This expression is still not gauge invariant, because J^{μ} is not, but by trial and error one finds that by adding an extra term one can form a gauge invariant functional

$$
\begin{align*}
\tilde{\Gamma}\left(U, A_{\mu}\right)= & \Gamma(U)-e \int \mathrm{~d}^{4} x A_{\mu} J^{\mu}+\frac{i e^{2}}{24 \pi^{2}} \int \mathrm{~d}^{4} x \varepsilon^{\mu \nu \alpha \beta}\left(\partial_{\mu} A_{\nu}\right) A_{\alpha} \\
& \times \operatorname{Tr}\left[Q^{2}\left(\partial_{\beta} U\right) U^{-1}+Q^{2} U^{-1}\left(\partial_{\beta} U\right)+Q U Q U^{-1}\left(\partial_{\beta} U\right) U^{-1}\right] \tag{19}
\end{align*}
$$

Our gauge invariant lagrangian will then be

$$
\begin{equation*}
\mathfrak{E}=\frac{1}{16} F_{\pi}^{2} \int \mathrm{~d}^{4} x \operatorname{Tr} D_{\mu} U D_{\mu} U^{-1}+n \tilde{\Gamma} . \tag{20}
\end{equation*}
$$

What value of the integer n will reproduce QCD results?

Here we find a surprise. The last term in (18) has a piece that describes $\pi^{0} \rightarrow \gamma \gamma$. Expanding U and integrating by parts, (18) has a piece

$$
\begin{equation*}
A=\frac{n e^{2}}{48 \pi^{2} F_{\pi}} \pi^{0} \varepsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta} . \tag{21}
\end{equation*}
$$

This agrees with the result from QCD triangle diagrams [6] if $n=N_{\mathrm{c}}$, the number of colors. The Noether coupling $-e A_{\mu} J^{\mu}$ describes, among other things, a $\gamma \pi^{+} \pi^{0} \pi^{-}$ vertex

$$
\begin{equation*}
B=-\frac{2}{3} i e \frac{n}{\pi^{2} F_{\pi}^{3}} \varepsilon^{\mu \nu \alpha \beta} A_{\mu} \partial_{\nu} \pi^{+} \partial_{\alpha} \pi^{-} \partial_{\beta} \pi^{0} . \tag{22}
\end{equation*}
$$

Again this agrees with calculations [7] based on the QCD VAAA anomaly if $n=N_{c}$. The effective action $N_{\mathrm{c}} \tilde{\Gamma}$ (first constructed in another way by Wess and Zumino) precisely describes all effects of QCD anomalies in low-energy processes with photons and Goldstone bosons.

It is interesting to try to gauge subgroups of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ other than electromagnetism. One may have in mind, for instance, applications to the standard weak interaction model. In general, one may try to gauge an arbitrary subgroup H of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$, with generators $K^{\sigma}, \sigma=1 \ldots r$. Each K^{σ} is a linear combination of generators $T_{\mathrm{L}}^{\mathrm{o}}$ and T_{R}^{σ} of $\mathrm{SU}(3)_{\mathrm{L}}$ and $\mathrm{SU}(3)_{\mathrm{R}}, K^{\sigma}=T_{\mathrm{L}}^{\mathrm{o}}+T_{\mathrm{R}}^{\mathrm{o}}$. (Either T_{L}^{σ} or T_{R}^{σ} may vanish for some values of σ.) For any space-time dependent functions $\varepsilon^{\sigma}(x)$, let $\varepsilon_{\mathrm{L}}=\sum_{\sigma} T_{\mathrm{L}}^{\sigma} \varepsilon^{\sigma}(x), \varepsilon_{\mathrm{R}}=\sum_{\sigma} T_{\mathrm{R}}^{\sigma} \varepsilon^{\sigma}(x)$. We want an action with local invariance under $U \rightarrow U+i\left(\varepsilon_{\mathrm{L}}(x) U-U \varepsilon_{\mathrm{R}}(x)\right)$.

Naturally, it is necessary to introduce gauge fields $A_{\mu}^{\sigma}(x)$, transforming as $A_{\mu}^{\sigma}(x)$ $\rightarrow A_{\mu}^{\sigma}(x)-\left(1 / e_{\sigma}\right) \partial_{\mu} \varepsilon^{\sigma}+f^{\sigma \tau \rho} \varepsilon^{\tau} A_{\mu}^{\rho}$ where e_{σ} is the coupling constant corresponding to the generator K^{σ}, and $f^{\sigma \tau \rho}$ are the structure constants of H. It is useful to define $A_{\mu \mathrm{L}}=\sum_{\sigma} e_{\sigma} A_{\mu}^{\sigma} T_{\mathrm{L}}^{\sigma}, A_{\mu}^{\mathrm{R}}=\sum_{\sigma} e_{\sigma} A_{\mu}^{\sigma} T_{\mathrm{R}}^{\sigma}$.

We have already seen that Γ incorporates the effects of anomalies, so it is not very surprising that a generalization of Γ that is gauge invariant under H exists only if H is a so-called anomaly-free subgroup of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$. Specifically, one finds that H can be gauged only if for each σ,

$$
\begin{equation*}
\operatorname{Tr}\left(T_{\mathrm{L}}^{\sigma}\right)^{3}=\operatorname{Tr}\left(T_{\mathrm{R}}^{\sigma}\right)^{3} \tag{23}
\end{equation*}
$$

which is the usual condition for cancellation of anomalies at the quark level.
If (23) is obeyed, a gauge invariant generalization of Γ can be constructed somewhat tediously by trial and error. It is useful to define $U_{\nu \mathrm{L}}=\left(\partial_{\nu} U\right) U^{-1}$ and $U_{\nu \mathrm{R}}=U^{-1} \partial_{\nu} U$. The gauge invariant functional then turns out to be

$$
\tilde{\Gamma}\left(A_{\mu}, U\right)=\Gamma(U)+\frac{1}{48 \pi^{2}} \int \mathrm{~d}^{4} x \varepsilon^{\mu \nu \alpha \beta} Z_{\mu \nu \alpha \beta}
$$

where

$$
\left.\begin{array}{rl}
Z_{\mu \nu \alpha \beta}= & -\operatorname{Tr}\left[A_{\mu \mathrm{L}} U_{\nu \mathrm{L}} U_{\alpha \mathrm{L}} U_{\beta \mathrm{L}}+(\mathrm{L} \rightarrow \mathrm{R})\right] \\
+ & i \operatorname{Tr}\left[\left[\left(\partial_{\mu} A_{\nu \mathrm{L}}\right) A_{\alpha \mathrm{L}}+A_{\mu \mathrm{L}}\left(\partial_{\nu} A_{\alpha \mathrm{L}}\right)\right] U_{\beta \mathrm{L}}+(\mathrm{L} \rightarrow \mathrm{R})\right] \\
+ & i \operatorname{Tr}\left[\left(\partial_{\mu} A_{\nu \mathrm{R}}\right) U^{-1} A_{\alpha \mathrm{L}} \partial_{\beta} U+A_{\mu \mathrm{L}} U^{-1}\left(\partial_{\nu} A_{\alpha \mathrm{R}}\right) \partial_{\beta} U\right] \\
- & \frac{1}{2} i \operatorname{Tr}\left(A_{\mu \mathrm{L}} U_{\nu \mathrm{L}} A_{\alpha \mathrm{L}} U_{\beta \mathrm{L}}-(\mathrm{L} \rightarrow \mathrm{R})\right) \\
+ & i \operatorname{Tr}\left[A_{\mu \mathrm{L}} U A_{\nu \mathrm{R}} U^{-1} U_{\alpha \mathrm{L}} U_{\beta \mathrm{L}}-A_{\mu \mathrm{R}} U^{-1} A_{\nu \mathrm{L}} U U_{\alpha \mathrm{R}} U_{\beta \mathrm{R}}\right] \\
- & \operatorname{Tr}[
\end{array}\left[\left(\partial_{\mu} A_{\nu \mathrm{R}}\right) A_{\alpha \mathrm{R}}+A_{\mu \mathrm{R}}\left(\partial_{\nu} A_{\alpha \mathrm{R}}\right)\right] U^{-1} A_{\beta \mathrm{L}} U\right] \text { U }
$$

If eq. (22) for cancellation of anomalies is not obeyed, then the variation of $\tilde{\Gamma}$ under a gauge transformation does not vanish but is

$$
\begin{align*}
\delta \tilde{\Gamma}= & -\frac{1}{24 \pi^{2}} \int \mathrm{~d}^{4} x \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} \varepsilon_{\mathrm{L}}\left[\left(\partial_{\mu} A_{\nu \mathrm{L}}\right)\left(\partial_{\alpha} A_{\beta \mathrm{L}}\right)-\frac{1}{2} i \partial_{\mu}\left(A_{\nu \mathrm{L}} A_{\alpha \mathrm{L}} A_{\beta \mathrm{L}}\right)\right] \\
& -(\mathrm{L} \rightarrow \mathrm{R}), \tag{25}
\end{align*}
$$

in agreement with computations at the quark level [8] of the anomalous variation of the effective action under a gauge transformation.

Thus, Γ incorporates all information usually associated with triangle anomalies, including the restriction on what subgroups H of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ can be gauged. However, there is another potential obstruction to the ability to gauge a subgroup of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$. This is the non-perturbative anomaly [3] associated with $\pi_{4}(\mathrm{H})$. Is this anomaly, as well, implicit in Γ ? In fact, it is.

Let H be an $\mathrm{SU}(2)$ subgroup of $\mathrm{SU}(3)_{L}$, chosen so that an $\mathrm{SU}(2)$ matrix W is embedded in $\mathrm{SU}(3)_{\mathrm{L}}$ as

$$
\hat{W}=\left(\begin{array}{c|c}
& 0 \\
W & 0 \\
\hline 00 & 1
\end{array}\right) .
$$

This subgroup is free of triangle anomalies, so the functional $\tilde{\Gamma}$ of eq. (23) is invariant under infinitesimal local H transformations.

However, is $\tilde{\Gamma}$ invariant under H transformations that cannot be reached continuously? Since $\pi_{4}(S U(2))=Z_{2}$, there is one non-trivial homotopy class of $S U(2)$ gauge transformations. Let W be an $\mathrm{SU}(2)$ gauge transformation in this non-trivial class. Under $\hat{W}, \tilde{\Gamma}$ may at most be shifted by a constant, independent of U and A_{μ}, because $\delta \tilde{\Gamma} / \delta U$ and $\delta \tilde{\Gamma} / \delta A_{\mu}$ are gauge-covariant local functionals of U and A_{μ}. Also $\tilde{\Gamma}$ is invariant under \hat{W}^{2}, since \hat{W}^{2} is equivalent to the identity in $\pi_{4}(\mathrm{SU}(2)$), and we know $\tilde{\Gamma}$ is invariant under topologically trivial gauge transformations. This does not quite mean that $\tilde{\Gamma}$ is invariant under W. Since $\tilde{\Gamma}$ is only defined modulo 2π, the fact that $\tilde{\Gamma}$ is invariant under W^{2} leaves two possibilities for how $\tilde{\Gamma}$ behaves under W. It may be invariant, or it may be shifted by π.

To choose between these alternatives, it is enough to consider a special case. For instance, it suffices to evaluate $\Delta=\tilde{\Gamma}\left(U=1, \quad A_{\mu}=0\right)-\tilde{\Gamma}\left(U=\hat{W}, \quad A_{\mu}=\right.$ $\left.i e^{-1}\left(\partial_{\mu} \hat{W}\right) \hat{W}^{-1}\right)$. It is not difficult to see that in this case the complicated terms involving $\varepsilon^{\mu \nu \alpha \beta} Z_{\mu \nu \alpha \beta}$ vanish, so in fact $\Delta=\Gamma(U=1)-\Gamma(U=\hat{W})$. A detailed calculation shows that

$$
\begin{equation*}
\Gamma(U=1)-\Gamma(U=\hat{W})=\pi . \tag{26}
\end{equation*}
$$

This calculation has some other interesting applications and will be described elsewhere [9].

The Feynman path integral, which contains a factor $\exp \left(i N_{\mathrm{c}} \tilde{\Gamma}\right)$, hence picks up under W a factor $\exp \left(i N_{\mathrm{c}} \pi\right)=(-1)^{N_{\mathrm{c}}}$. It is gauge invariant if N_{c} is even, but not if N_{c} is odd. This agrees with the determination of the $\operatorname{SU}(2)$ anomaly at the quark level [3]. For under H , the right-handed quarks are singlets. The left-handed quarks consist of one singlet and one doublet per color, so the number of doublets equals N_{c}. The argument of ref. [3] shows at the quark level that the effective action transforms under W as $(-1)^{N_{\mathrm{c}}}$.

Finally, let us make the following remark, which apart from its intrinsic interest will be useful elsewhere [9]. Consider $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ currents defined at the quark level as

$$
\begin{equation*}
J_{\mu \mathrm{L}}^{a}=\bar{q} \lambda^{a} \gamma_{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) q, \quad J_{\mu \mathrm{R}}^{a}=\bar{q} \lambda^{a} \gamma_{\mu} \frac{1}{2}\left(1+\gamma_{5}\right) q . \tag{27}
\end{equation*}
$$

By analogy with eq. (17), the proper sigma model description of these currents contains pieces

$$
\begin{align*}
& J_{\mathrm{L}}^{\mu a}=\frac{N_{\mathrm{c}}}{48 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} \lambda^{a} U_{\nu \mathrm{L}} U_{\alpha \mathrm{L}} U_{\beta \mathrm{L}}, \\
& J_{\mathrm{R}}^{\mu a}=\frac{N_{\mathrm{c}}}{48 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} \lambda^{a} U_{\nu \mathrm{R}} U_{\alpha \mathrm{R}} U_{\beta \mathrm{R}}, \tag{28}
\end{align*}
$$

corresponding (via Noether's theorem) to the addition to the lagrangian of $N_{\mathrm{c}} \Gamma$. In this discussion, the λ^{a} should be traceless $\operatorname{SU(3)}$ generators. However, let us try to construct an anomalous baryon number current in the same way. We define the baryon number of a quark (whether left-handed or right-handed) to be $1 / N_{\mathrm{c}}$, so that an ordinary baryon made from N_{c} quarks has baryon number one. Replacing λ^{a} by $1 / N_{\mathrm{c}}$, but including contributions of both left-handed and right-handed quarks, the anomalous baryon-number current would be

$$
\begin{equation*}
J^{\mu}=\frac{1}{24 \pi^{2}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U . \tag{29}
\end{equation*}
$$

One way to see that this is the proper, and properly normalized, formula is to consider gauging an arbitrary subgroup not of $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ but of $\mathrm{SU}(3)_{\mathrm{L}} \times$ $\mathrm{SU}(3)_{\mathrm{R}} \times \mathrm{U}(1), \mathrm{U}(1)$ being baryon number. The gauging of $\mathrm{U}(1)$ is accomplished by adding a Noether coupling $-e J^{\mu} B_{\mu}$ plus whatever higher-order terms may be required by gauge invariance. (B_{μ} is a $\mathrm{U}(1)$ gauge field which may be coupled as well to some $\mathrm{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}}$ generator.) With J^{μ} defined in (29), this leads to a generalization of $\tilde{\Gamma}$ that properly reflects anomalous diagrams involving the baryonnumber current (for instance, it properly incorporates the anomaly in the baryon number $\mathrm{SU}(2)_{\mathrm{L}}-\mathrm{SU}(2)_{\mathrm{L}}$ triangle that leads to baryon non-conservation by instantons in the standard weak interaction model). Eq. (29) may also be extracted from QCD by methods of Goldstone and Wilczek [10].

References

[1] J. Wess and B. Zumino, Phys. Lett. 37B (1971) 95
[2] S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett. 48 (1982) 975; Ann. of Phys. 140 (1982) 372
[3] E. Witten, Phys. Lett. 117B (1982) 324
[4] A.P. Balachandran, V.P. Nair and C.G. Trahern, Syracuse University preprint SU-4217-205 (1981)
[5] R. Bott and R. Seeley, Comm. Math. Phys. 62 (1978) 235
[6] S.L. Adler, Phys. Rev. 177 (1969) 2426;
J.S. Bell and R. Jackiw, Nuovo Cim. 60 (1969) 147;
W.A. Bardeen, Phys. Rev. 184 (1969) 1848
[7] S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517;
R. Aviv and A. Zee, Phys. Rev. D5 (1972) 2372
S.L. Adler, B.W. Lee, S.B. Treiman and A. Zee, Phys. Rev. D4 (1971) 3497
[8] D.J. Gross and R. Jackiw, Phys. Rev. D6 (1972) 477
[9] E. Witten, Nucl. Phys. B223 (1983) 433
[10] J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47 (1981) 986

[^0]: * Supported in part by NSF Grant PHY80-19754.

[^1]: ${ }^{\star}$ Let us first try to define ω at $U=1$; it can then be extended to the whole $\mathrm{SU}(3)$ manifold by an $\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}$ transformation. At $U=1$, ω must be invariant under the diagonal subgroup of $\operatorname{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}}$ that leaves fixed $U=1$. The tangent space to the $\mathrm{SU}(3)$ manifold at $U=1$ can be identified with the Lie algebra of $\operatorname{SU}(3)$. So ω, at $U=1$, defines a fifth-order antisymmetric invariant in the $\mathrm{SU}(3)$ Lie algebra. There is only one such invariant. Given five $\operatorname{SU}(3)$ generators A, B, C, D and E, the one such invariant is $\operatorname{Tr} A B C D E-\operatorname{Tr} B A C D E \pm$ permutations. The $\mathrm{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}}$ invariant ω so defined has zero curl ($\partial_{i} \omega_{j k l m n} \pm$ permutations $=0$) and for this reason (11) is invariant under infinitesimal variations of Q; there arises only the topological problem discussed in the text.

[^2]: * Our formula should agree for $n=1$ with formulas of ref. [1], as later equations make clear. There appears to be a numerical error on p. 97 of ref. [1] ($\frac{1}{6}$ instead of $\frac{2}{15}$).

