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A new mathematical framework for the Wess-Zumino chiral effective action is described. It is 
shown that this action obeys an a priori quantization law, analogous to Dirac's quantization of 
magnetic change. It incorporates in current algebra both perturbative and non-perturbative 
anomalies. 

The purpose of this paper is to clarify an old but relatively obscure aspect of 
current algebra: the Wess-Zumino effective lagrangian [1] which summarizes the 
effects of anomalies in current algebra. As we will see, this effective lagrangian has 
unexpected analogies to some 2 + 1 dimensional models discussed recently by Deser 
et al. [2] and to a recently noted SU(2) anomaly [3]. There also are connections with 
work of Balachandran et al. [4]. 

For definiteness we will consider a theory with SU(3)L X SU(3)R symmetry 
spontaneously broken down to the diagonal SU(3). We will ignore explicit symme- 
try-breaking perturbations, such as quark bare masses. With SU(3)L × SU(3)R 
broken to diagonal SU(3), the vacuum states of the theory are in one to one 
correspondence with points in the SU(3) manifold. Correspondingly, the low-energy 
dynamics can be conveniently described by introducing a field U(x ~') that trans- 
forms in a so-called non-linear realization of SU(3) c × SU(3) R. For each space-time 
point x", U(x  '~) is an element of SU(3): a 3 × 3 unitary matrix of determinant one. 
Under an SU(3)L x SU(3)R transformation by unitary matrices (A, B), U trans- 
forms as U ---, A UB-  ~. 

The effective lagrangian for U must have SU(3) c × SU(3)R symmetry, and, to 
describe correctly the low-energy limit, it must have the smallest possible number of 
derivatives. The unique choice with only two derivatives is 

= ~ F ~ f d 4 x T r  O~,UO.U l, 
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where experiment indicates F~ = 190 MeV. The perturbative expansion of U is 

2i 8 
U = I + ~  • M~r a + . - - ,  (2) 

a=l 

where M (normalized so Tr ~ b  = 28~b) are the SU(3) generators and 7r a are the 

Goldstone boson fields. 
This effective lagrangian is known to incorporate all relevant symmetries of QCD. 

All current algebra theorems governing the extreme low-energy limit of Goldstone 

boson S-matrix elements can be recovered from the tree approximation to it. What  is 
less well known, perhaps, is that (1) possesses an extra discrete symmetry that is not 
a symmetry of QCD. 

The lagrangian (1) is invariant under U ~  U T. In terms of pions this is rr ° ~ ~r °, 

I r + ~ I r - ;  it is ordinary charge conjugation. (1) is also invariant under the naive 
pari ty operation x ~  - x ,  t ~ t ,  U ~  U. We will call this P0. And finally, (1) is 
invariant under U ~ U-  ~. Comparing with eq. (2), we see that this latter operation is 
equivalent to ~r ~ ~ -~r  ~, a = 1 . . . . .  8. This is the operation that counts modulo two 
the number  of bosons, N B, so we will call it ( -  1) u". 

Certainly, ( -  1) u" is not a symmetry of QCD. The problem is the following. QCD 

is parity invariant only if the Goldstone bosons are treated as pseudoscalars. The 
pari ty operation in QCD corresponds to x ~ - x ,  t ~ t, U ~  U i. This is P = 
P 0 ( - 1 )  N"" QCD is invariant under P but not under P0 or ( - l )  N" separately. The 
simplest process that respects all bona fide symmetries of QCD but violates P0 and 
( - - l )  NB is K + K  ---' ~r+Tr%r - (note that the ~ meson decays to both K + K  - and 
~r+Tr°rr ). It  is natural to ask whether there is a simple way to add a higher-order 
term to (1) to obtain a lagrangian that obeys only the appropriate symmetries. 

The Euler-Lagrangian equation derived from (1) can be written 

O ~ ( ~ # U  ' 3 y )  = 0 .  (3) 

Let us try to add a suitable extra term to this equation. A Lorentz-invariant term 
that violates P0 must contain the Levi-Civita symbol e ~ a .  In the spirit of current 
algebra, we wish a term with the smallest possible number  of derivatives, since, in 
the low-energy limit, the derivatives of U are small. There is a unique P0-violating 
term with only four derivatives. We can generalize (3) to 

Ou(~F2U t a . U ) + X e " " ~ U - ' ( a ~ U ) U - ' ( O . U ) U - ' ( a . U ) U - I ( a ~ U ) = O ,  (4) 

being a constant. Although it violates P0, (4) can be seen to respect P = P 0 ( -  1) NB. 
Can eq. (4) be derived from a lagrangian? Here we find trouble. The only 

pseudoscalar of dimension four would seem to be e~ f lTr  U l ( a , U ) .  U I(O~U)U 1 
(O~U)U- l(aflU), but this vanishes, by antisymmetry of e " ~  and cyclic symmetry of 
the trace. Nevertheless, as we will see, there is a lagrangian. 
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Let us consider a simple problem of the same sort. Consider a particle of mass m 
constrained to move on an ordinary two-dimensional sphere of radius one. The 
lagrangian is £ = ½mf dt2~ and the equation of motion is m2; + mx;(Ek2~) = 0; the 

constraint is ~x~ = 1. This system respects the symmetries t ~ - t  and separately 

x; ~ - x ; .  If  we want an equation that is only invariant under the combined 
operation t ~ - t, x; ~ x;, the simplest choice is 

(5) 

where a is a constant. To derive this equation from a lagrangian is again trouble- 
some. There is no obvious term whose variation equals the right-hand side (since 

e,ikx,xj2 k = 0). 
However, this problem has a well-known solution. The right-hand side of (5) can 

be understood as the Lorentz force for an electric charge interacting with a magnetic 
monopole located at the center of the sphere. Introducing a vector potential A such 

that V x A = x / I x  13, the action for our problem is 

I= f + d,.  (6) 

This lagrangian is problematical because A; contains a Dirac string and certainly 
does not respect the symmetries of our problem. To explore this quantum mechani- 
cally let us consider the simplest form of the Feynman path integral, T re  - ~ H =  
f dx;(t)e -t. In e - I  the troublesome term is 

where the integration goes over the particle orbit ~,: a closed orbit if we discuss the 
simplest object T r e  ~n. 

By Gauss 's  law we can eliminate the vector potential from (7) in favor of the 
magnetic field. In fact, the closed orbit y of fig. la  is the boundary of a disc D, and 
by Gauss 's  law we can write (7) in terms of the magnetic flux through D: 

exp(i+,d ') :exp('4o jd  J). (8) 

The precise mathematical  statement here is that since 7r I (S  2)  = 0, the circle , / in  S 2 is 
the boundary of a disc D (or more exactly, a mapping y of a circle into S 2 can be 
extended to a mapping of a disc into $2). 

The right-hand side of (8) is manifestly well defined, unlike the left-hand side, 
which suffers from a Dirac string. We could try to use the right-hand side of (8) in a 
Feynman path integral. There is only one problem: D isn't unique. The curve y also 
bounds the disc D'  (fig. lc). There is no consistent way to decide whether to choose 
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(a) (b) (c) 

Fig. 1. A particle orbit 3' on the two-sphere (part (a)) bounds the discs D (part (b)) and D' (part (c)). 
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D or D' (the curve 7 could continuously be looped around the sphere or turned 
inside out). Working with D' we would get 

ia A i d x  i = , (9) exp(  ) exp( ) 
where a crucial minus sign on the right-hand side of (9) appears because ~, bounds D 
in a right-hand sense, but bounds D' in a left-hand sense. If we are to introduce the 
right-hand side of (8) or (9) in a Feynman path integral, we must require that they 
be equal. This is equivalent to 

1 = e x p ( i a f D + D F ~ j d Y ~ i J ) .  (10) 

Since D + D' is the whole two sphere S 2, and fs2F~jdE ij = 4~r, (10) is obeyed if and 
only if c~ is an integer or half-integer. This is Dirac~s quantization condition for the 
product of electric and magnetic charges. 

Now let us return to our original problem. We imagine space-time to be a very 
large four-dimensional sphere M. A given non-linear sigma model field U is a 
mapping of M into the SU(3) manifold (fig. 2a). Since 7r4(SU(3)) = 0, the four-sphere 
in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q. 

By analogy with the previous problem, let us try to find some object that can be 
integrated over Q to define an action functional. On the SU(3) manifold there is a 
unique fifth rank antisymmetric tensor w~jkt m that is invariant under SU(3)L × 
SU(3)R*. Analogous to the right-hand side of eq. (8), we define 

F = fQwijkt m d.Y ijkt" . ( 11 ) 

* Let us first try to define w at U = 1; it can then be extended to the whole SU(3) manifold by an 
SU(3)L × SU(3)R transformation. At U =  1, w must be invariant under the diagonal subgroup of 
SU(3)L × SU(3) R that leaves fixed U = I. The tangent space to the SU(3) manifold at U = 1 can be 
identified with the Lie algebra of SU(3). So ~0, at U = 1, defines a fifth-order antisymmetrie invariant 
in the SU(3) Lie algebra. There is only one such invariant. Given five SU(3) generators A, B, C, D 
and E, the one such invariant is Tr A B C D E  - Tr BA CDE + permutations. The SU(3)I~ × SU(3) R 
invariant w so defined has zero curl (c~iwjk/.,.+_ permutat ions=0)  and for this reason (11) is 
invariant under infinitesimal variations of Q; there arises only the topological problem discussed in 
the text. 
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(a) (b) (c) 

Fig. 2. Space-time, a four-sphere, is mapped into the SU(3) manifold. In part (a), space-time is 
symbolically denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds 

the discs Q and Q'. The SU(3) manifold is symbolized in these sketches by the interior of the oblong. 

As before, we hope to include exp(iF)  in a Feynman path integral. Again, the 
problem is that Q is not unique. Our four-sphere M is also the boundary of another 

five-disc Q' (fig. 2c). If we let 

I "t = -- fQWijk lrn  d~-. ijklrn , (12) 

(with, again, a minus sign because M bounds Q' with opposite orientation) then we 
r ¢0 d ~  ijkt" = 27r. integer. must require e x p ( i F ) =  exp(iF ' )  or equivalently jQ+Q, ij~t,, 

Since Q + Q' is a closed five-dimensional sphere, our requirement is 

fs ~ijklm d ~  ijkt" = 2~r- integer, 

for any five-sphere S in the SU(3) manifold. 
We thus need the topological classification of mappings of the five-sphere into 

SU(3). Since ~rs(SU(3))= Z, every five sphere in SU(3) is topologically a multiple of 
a basic five sphere S 0. We normalize w so that 

fso tOijktm d~, ij~lm = 27r , (13) 

and then (with F in eq. (11)) we may work with the action 

I = ~ F 2 f  d4xTr  O~UO~U -1 + n F ,  (14) 

where n is an arbitrary integer. F is, in fact, the Wess-Zumino lagrangian. Only the a 
priori quantization of n is a new result. 
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The identification of S o and the proper normalization of to is a subtle mathemati-  
cal problem. The solution involves a factor of two from the Bott periodicity theorem. 
Without abstract notation, the result [5] can be stated as follows. Let y~, i = 1. . .  5 be 

coordinates for the disc Q. Then on Q (where we need it) 

i dY.'Jk'~[TrV tOUU-' OUu ' OU U-' O-~Uu 10U] 
d ~ i j k l m  OOijklm = -- 2407r 2 Oy' Oy; cgy k Oy I ~ y m  " 

(15) 

The physical consequences of this can be made more transparent as follows. From 

eq. (2), 

2i 
U -~ O i U = T O , A  + O(A2) ,  

r ~  
where A = NX"~r ~. (16) 

So 

~Oijk~mdNiJktm 2 5 dNiJk~mTr 3~A OjA OkA O~A OmA + O(A 6) 
15~r F,; 

_ 2 5 dNiJk'm Oi(TrA OjA OkA O,A OmA ) + O(A6) .  
15~r F,; 

So fQ~oijkt m dN ijk/m is (to order A 5 and in fact also in higher orders) the integral of a 
total divergence which can be expressed by Stokes' theorem as an integral over the 

boundary of Q. By construction, this boundary is precisely space-time. We have, 

then, 

2 fd4xe ' ' BTrA O~,A 3~A O,~AO~A + higher order terms. (17) nF = n 15~r 2- - - - - -~  5 

In a hypothetical world of massless kaons and pions, this effective lagrangian 
rigorously describes the low-energy limit of K+K-- ,Tr+~r%r -* .  We reach the 
remarkable conclusion that in any theory with SU(3)x  SU(3) broken to diagonal 
SU(3), the low-energy limit of the amplitude for this reaction must be (in units given 
in (1 7)) an integer. 

What is the value of this integer in QCD? Were n to vanish, the practical interest 
of our discussion would be greatly reduced. It turns out that if N c is the number  of 
colors (three in the real world) then n = N c. The simplest way to deduce this is a 

'* Our formula should agree for n = 1 with formulas of ref. [1], as later equations make clear. There 
appears to be a numerical error on p. 97 of ref. [1] (6 ~ instead of 125). 
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procedure that is of interest anyway, viz. coupling to electromagnetism, so as to 
describe the low-energy dynamics of Goldstone bosons and photons. 

Let 

2 
3 

1 
Q =  3 

/ 
3 

be the usual electric charge matrix of quarks. The functional F is invariant under 
global charge rotations, U ~  U+ie[Q,U], where e is a constant. We wish to 

promote this to a local symmetry, U ~  U+ ie(x)[Q, U], where e(x)  is an arbitrary 
function of x. It  is necessary, of course, to introduce the photon field a n which 
transforms as A r -~ Au - ( l / e )  Ore; e "is the charge of the proton. 

Usually a global symmetry can straightforwardly be gauged by replacing deriva- 

tives by covariant derivatives, 0 r ---, D r = 0 r + ieA r. In the case at hand, F is not 
given as the integral of a manifestly SU(3)L × SU(3)R invariant expression, so the 
standard road to gauging global symmetries of F is not available. One can still resort 
to the trial and error Noether method, widely used in supergravity. Under  a local 
charge rotation, one finds F ~ F - f d4x Ore Jr where 

j~ = _ _  1 e r . ~ T r [ Q ( O ~ U U _ , ) ( O ~ U U  1)(OflUU-1) 
48qr 2 

+Q(U- '  a~U)(V-' OoV)(V-' o . v l ] .  (18) 

is the extra term in the electromagnetic current required (from Noether 's  theorem) 
due to the addition of F to the lagrangian. The first step in the construction of an 
invariant lagrangian is to add the Noether coupling, F - ~  F ' =  F -  efd4x ArJ~(x ). 
This expression is still not gauge invariant, because j r  is not, but by trial and error 
one finds that by adding an extra term one can form a gauge invariant functional 

× T r [ Q 2 (  O[~U)U -1 2v Q 2 U -  1( O[3U ) -~- QUQU l( a ~ V ) U - 1 ]  . (19) 

Our gauge invariant lagrangian will then be 

~= , ~ F ~ f d % T r D y D y  ' + nf'. (20) 

What  value of the integer n will reproduce QCD results? 
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Here we find a surprise. The last term in (18) has a piece that describes rr ° --* 73'- 
Expanding U and integrating by parts, (18) has a piece 

ne 2 
A 48~r 2 ~  7r °e"~¢F~F,~.  (21) 

This agrees with the result from QCD triangle diagrams [6] if n = Arc, the number of 
colors. The Noether coupling - e A , J  ~ describes, among other things, a y~r+Tr%r 
vertex 

B = - } i e _ ~ - ~ 3 e ~ l ~ A ~  8~r + 8~7r OB~r°. (22) 

Again this agrees with calculations [7] based on the QCD VAAA anomaly if n -- N c. 
The effective action NcF (first constructed in another way by Wess and Zumino) 
precisely describes all effects of QCD anomalies in low-energy processes with 
photons and Goldstone bosons. 

It is interesting to try to gauge subgroups of SU(3)L × SU(3)R other than 
electromagnetism. One may have in mind, for instance, applications to the standard 
weak interaction model. In general, one may try to gauge an arbitrary subgroup H of 
SU(3)L X SU(3)R, with generators K °, o = 1 . . .  r. Each K ° is a linear combination of 
generators T~ and T~ of SU(3)L and SU(3)R, K ° = T~ + T~. (Either T~ or T~ may 
vanish for some values of o.) For any space-time dependent functions e° (x ) ,  let 
e L = E ° T ~ e ° ( x ) ,  e R = E ° T ~ e ° ( x ) .  We want an action with local invariance under 

U---~ U +  i ( e L ( X ) U - -  UeR(X)) .  

Naturally, it is necessary to introduce gauge fields A°,(x) ,  transforming as A ~ ( x )  
o o ° ~ p  r p ---, A ~ ( x )  - (1/eo)  O~e + f  e 54~ where e° is the coupling constant corresponding to 

the generator K °, and fow are the structure constants of H. It is useful to define 
_ o o R _ _  ~ o 

A . L  -- E o e o A , T ~ ,  A ,  - E , e o A , T ~ .  
We have already seen that F incorporates the effects of anomalies, so it is not very 

surprising that a generalization of F that is gauge invariant under H exists only if H 
is a so-called anomaly-free subgroup of SU(3)L × SU(3)R. Specifically, one finds 
that H can be gauged only if for each o, 

Tr(T~)  3 = Tr(T~)  3 , (23) 

which is the usual condition for cancellation of anomalies at the quark level. 
If (23) is obeyed, a gauge invariant generalization of F can be constructed 

somewhat tediously by trial and error. It is useful to define U~L = ( O , U ) U  - I  and 
U~R = U ~ O~U. The gauge invariant functional then turns out to be 

F ( A . ,  U) = F ( U ) + 4 - - ~  2 f d 4 x e " " ~ B Z ~ . ~ ,  
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where 

Z~..fl= --Tr[A.LU.LU.LU~L + (L ~ R)] 
+iTr[[(OttAvL)AaL +AgL(OvAaL)]U~L + (L ~ R)] 

+iTr[( OgAvR)U 1Ac, L OBU + A~tLU-I( OvAaR) OBU ] 

- Tr(A.LU.LA.LV L -- (L R)) 

+ iTr[ AttLUAvRU-1UaLUflL -- AItRU- IAvLUU•RUflR ] 

- T r [ [ (  CgtLAvR)AaR + AttR( O~A.R)] U- ]AcL U 

- - [ (  OttArL)AaL + AgL ( OrAaL)]UABR U-l] 

- Tr[ A .R U- 'AvLUAaR UBR + Ag L UAvR U- IAaL UBL ] 

- T r [  AItLAvLU ( OaABR)U-I + AItRAvRU-1( OaABL)U] 

_ iTr[A.pA.RA~RU- 1A#i. U _ A.LA.LA~LUA~p. U- 1 

i - i 1 - 1  -4- ~A.LAvLUAaRABRU ] + ~A.RU A~LUA.RU A3LU ] . (24) 

If eq. (22) for cancellation of anomalies is not obeyed, then the variation of/~ under 
a gauge transformation does not vanish but is 

8[" 21-¢r2fd4xeg"aBTr~L[(OgAvL)(OaABL)--½iOg(A.LA~LABL)] 

- (L ~ R ) ,  (25)  

in agreement with computations at the quark level [8] of the anomalous variation of 
the effective action under a gauge transformation. 

Thus, F incorporates all information usually associated with triangle anomalies, 
including the restriction on what subgroups H of SU(3)L × SU(3)R can be gauged. 
However, there is another potential obstruction to the ability to gauge a subgroup of 
SU(3)L X SU(3)R. This is the non-perturbative anomaly [3] associated with ¢r4(H ). Is 
this anomaly, as well, implicit in F? In fact, it is. 

Let H be an SU(2) subgroup of SU(3)L, chosen so that an SU(2) matrix W is 
embedded in SU(3)L as 

f i , ' =  w o . 
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This subgroup is free of triangle anomalies, so the functional /" of  eq. (23) is 
invariant under infinitesimal local H transformations. 

However, is P invariant under H transformations that cannot be reached continu- 
ously? Since %(SU(2))= Z 2, there is one non-trivial homotopy class of SU(2) gauge 
transformations. Let W be an SU(2) gauge transformation in this non-trivial class. 
Under I,V, f '  may at most be shifted by a constant, independent of U and An, 
because ~['/SU and 8P/SA n are gauge-covariant local functionals of U and A,. Also 
/~ is invariant under lJ¢ "2, since ~Z2 is equivalent to the identity in ~r4(SU(2)), and we 
know [" is invariant under topologically trivial gauge transformations. This does not 
quite mean that/~ is invariant under W. Since iP is only defined modulo 2~r, the fact 
that/~ is invariant under W 2 leaves two possibilities for how/"  behaves under W. It 
may be invariant, or it may be shifted by ~r. 

To choose between these alternatives, it is enough to consider a special case. For 
instance, it suffices to evaluate A = iP(U= 1, A n = 0 ) - / ~ ( U =  I)/, A, = 
ie-~(8,I2V)IJV-1). It is not difficult to see that in this case the complicated terms 
involving e"=~l~z,==l~ vanish, so in fact A = F(U = 1) - F(U = l)/). A detailed calcula- 
tion shows that 

r ( u =  1) - r ( u =  w )  = ,7. (26) 

This calculation has some other interesting applications and will be described 
elsewhere [9]. 

The Feynman path integral, which contains a factor exp(iNc/~), hence picks up 
under W a factor exp(iNc~r ) = ( - 1) No. It is gauge invariant if N c is even, but not if N c 
is odd. This agrees with the determination of the SU(2) anomaly at the quark level 
[3]. For under H, the fight-handed quarks are singlets. The left-handed quarks 
consist of one singlet and one doublet per color, so the number of doublets equals 
No. The argument of ref. [3] shows at the quark level that the effective action 
transforms under W as ( -  1) u~. 

Finally, let us make the following remark, which apart from its intrinsic interest 
will be useful elsewhere [9]. Consider SU(3)L × SU(3)R currents defined at the quark 
level as 

J ~  = qTt~'Y~,½ ( 1 - "/s) q, J ~  = ~7)~aYn½ ( 1 + Y,)q. (27) 

By analogy with eq. (17), the proper sigma model description of these currents 
contains pieces 

Nc e.~/~Tr ~U~LU,.LUI~L, 
j ~ a =  48rr 2 

J~J = Nc eu~"/~Tr MU~RU.RU~R, (28) 
48rr 2 
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corresponding (via Noether's theorem) to the addition to the lagrangian of NcF. In 
this discussion, the X~ should be traceless SU(3) generators. However, let us try to 

construct an anomalous baryon number current in the same way. We define the 

baryon number of a quark (whether left-handed or right-handed) to be 1 / N  c, so that 

an ordinary baryon made from N c quarks has baryon number one. Replacing Xa by 

1/Nc,  but including contributions of both left-handed and right-handed quarks, the 

anomalous baryon-number current would be 

2 2 e ~ T r  U -  l 3.U U -  1 O.U U 1 OBU. (29) 

One way to see that this is the proper, and properly normalized, formula is to 

consider gauging an arbitrary subgroup not of SU(3)c × SU(3)R but of SU(3)c × 

SU(3)R × U(1), U(1) being baryon number. The gauging of U(1) is accomplished by 

adding a Noether coupling -eJ~'B~, plus whatever higher-order terms may be 

required by gauge invariance. (B, is a U(1) gauge field which may be coupled as well 

to some SU(3)c × SU(3)R generator.) With J¢ defined in (29), this leads to a 

generalization of/~ that properly reflects anomalous diagrams involving the baryon- 
number current (for instance, it properly incorporates the anomaly in the baryon 

number SU(2)L - SU(2)c triangle that leads to baryon non-conservation by instan- 
tons in the standard weak interaction model). Eq. (29) may also be extracted from 

QCD by methods of Goldstone and Wilczek [10]. 
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