Проектирование и результаты экспериментальных испытаний прототипов детекторов установки KLOD

В. Н. Болотов,¹ Г. И. Бритвич,² Ю. П. Гуз,² А. И. Макаров,^{1,*} А. П. Останков²

¹Институт ядерных исследований РАН ²ГНЦ «Институт физики высоких энергий»

Проектируемая установка KLOD предназначена для обнаружения и исследования ультра-редкого распада $K_L^0 \to \pi^0 \nu \overline{\nu}$, его предсказанная по Стандартной модели вероятность $Br = (3.0 \pm 0.6) \times 10^{-11}$. Рассмотрено проектирование и испытание прототипов важнейших детекторов установки: вето-системы распадного объема и пучкового вето-калориметра. Показана возможность предложенного пучкового вето-калориметра выполнять регистрацию γ -квантов с высокой эффективностью при загрузке пучковыми нейтронами 300 МГц.

PACS numbers: 29.40.Vj, 13.20.Eb

1. ВВЕДЕНИЕ

Распад $K_L^0 \to \pi^0 \nu \overline{\nu}$, обусловленный прямым нарушением СР-инвариантности, называется «золотой модой» распадов каонов [1]. Его вероятность в соответствии со Стандартной моделью (СМ) пропорциональна квадрату элемента η матрицы СКМ; измерение распада будет проверкой согласованности параметров СМ и проверкой существования «новой физики».

Стратегия эксперимента аналогична разработанной в проектах КАМІ (FNAL) [2], E391a (KEK) [3] и KOTO (J-PARC) [4]. Характеристики эксперимента KLOD [5] в сравнении с этими проектами представлены в табл. 1.

Для подавления фонов от распадов каонов, прежде всего $K_L^0 \to 2\pi^0$ и $K_L^0 \to 2\gamma$, будет активно использовано ограничение на поперечный импульс π^0 : $P_t < 120$ МэВ. Для этого пучок каонов должен иметь небольшой разброс по поперечному импульсу, т.е.

^{*} Electronic address: makarov@meson1.inr.ac.ru

должен быть достаточно узким. Возможность создания пучкового канала с требуемыми характеристиками показана в [6].

2. ПРОЕКТ УСТАНОВКИ КLOD

Установка КЛОД (схема на рис. 1) представляет собой помещенный в высокий вакуум распадный объем, окруженный со всех сторон детекторами. Регистрация 2-х фотонов с измерением их энергии и направления осуществляется передним (главным) калориметром. Для регистрации дополнительных частиц от фоновых распадов, например, фотонов от распада $K_L^0 \rightarrow 2\pi^0$, предназначена вето-система распадного объема. Для запрета заряженных частиц будет использован вето-годоскоп. Для регистрации потерянных через отверстие главного калориметра фотонов в конце установки на пучке расположится пучковый вето-калориметр. Его задача — высокая эффективность регистрации фотонов при как можно более низкой эффективности регистрации пучковых нейтронов.

3. РАСПАДНАЯ ВЕТО-СИСТЕМА

Один из важнейших детекторов — вето-система, окружающая распадный объем. Учитывая то, что она будет составлять основную часть стоимости установки, ее естественно выполнить в виде сэмплинг-структуры (чередующихся слоев конвертера и активного вещества).

Детектор должен обеспечивать высокую эффективность регистрации фотонов: уровня неэффективности 10^{-6} можно достичь для γ энергий $\gtrsim 1$ ГэВ, что требует глубины калориметра $\geq 18 X_0$. Для меньших энергий возможности ограничены ростом сечений фотоядерных взаимодействий и сэмплинг-эффектом, который начинает доминировать при энергиях < 100 МэВ. Чтобы сократить влияние последнего, а также получить возможность регистрации фотонов с энергиями до 1 МэВ, важно выбрать как можно более «рыхлую» структуру детектора.

В качестве основного варианта мы рассматриваем модули типа «шашлык», содержащие 300 слоев из (свинцовой пластины 0.3 мм и сцинтилляционной пластины 1.5 мм), обеспечивая ячейке размерами (100 × 100 × 560) мм³ длину 15.9 X₀. Светосбор осуществляется спектросмещающими волокнами. Модули этой конструкции [7] производятся серийно в ИФВЭ; были произведены и протестированы несколько модулей, модифицированных в соответствии с нашими требованиями:

- форма модуля в виде «лесенки» (см. рис. 2) при последовательном расположении модулей позволяет избежать любых возможных зазоров в распадной системе;
- в последней трети детектора толщины свинцовых пластин удвоены, чтобы обеспечить полную длину 18X₀.

Произведенные модули протестированы на вторичных пучках ускорительного комплекса У-70 ИФВЭ, в том числе, для проверки внесенных в конструкцию изменений. Основные результаты следующие:

- модули позволяют уверенно детектировать, давая 3.5 фотоэлектрона на 1 сцинтилляционную пластину;
- световыход составляет 10 фотоэлектронов на 1 МэВ;
- измеренное разрешение составляет 1.5% для электронов с энергией 10 ГэВ, что согласуется с раннее измеренной зависимостью $\sigma_E/E = 3\%/\sqrt{E} + 1\%$;
- нелинейность отклика составляет $\approx 3\%$.

Таким образом, представляется возможным детектировать фотоны с низкими энергиям до ~ 1 МэВ.

4. ПУЧКОВЫЙ ВЕТО-КАЛОРИМЕТР

Пучковый вето-калориметр (ПВК) — маленький, но важный детектор, который должен работать в условиях очень высокой загрузки нейтронами — 300 МГц. При этом неправильная регистрация нейтронов как γ -квантов даст вклад в «мертвое время» установки, чем больше эффективность регистрации нейтронов — тем меньше полный аксептанс установки. Даже если ПВК отодвинут на 3.5 м от главного калориметра, 20% распадов $K_L^0 \rightarrow 2\pi^0$ имеют прошедший через отверстие главного калориметра фотон, попавший в ПВК. Более того, в 2% распадов $K_L^0 \rightarrow 2\pi^0$ оба γ от 1 π^0 попадают в ПВК; впрочем, в таких событиях γ -кванты имеют довольно жесткий спектр (рис. 3). Необходимо достичь неэффективность регистрации каждого γ-кванта около 10⁻³ для энергий, по крайней мере, ≳ 1 ГэВ, и желательно для среднего диапазона энергий 0.25– 1 ГэВ (не хуже 10⁻²). Учитывая наличие относительно мягких пучковых γ-квантов, вероятно, должен быть выставлен порог регистрации ≈ 0.25 ГэВ.

Для подавления регистрации нейтронов мы планируем использовать метод двойного светосбора — сцинтилляционного и черенковского, т.е. считывания одновременно сцинтилляционных и чистых пластиковых волокон в одном детекторе. Поскольку только частицы со скоростью β выше порога дают черенковский сигнал в среде, отношение черенковского и сцинтилляционного сигнала для электромагнитных и адронных ливней должно быть разным. Сообщалось [8], что таким образом неэлектромагнитная компонента адронных ливней может быть подавлена в 5 раз. Не только полное отношение, но и поведение отношения двух сигналов в поперечном и продольном направлениях различно [9], что также может быть использовано для режекции ливней γ -квантов от нейтронов.

4.1. Моделирование пучкового вето-калориметра методом Монте-Карло

Моделирование Монте-Карло (при помощи программы GEANT4) выполнено для калориметрической структуры, соответствующей 200 одинаковым слоям, расположенных вдоль линии пучка. Каждый слой содержит свинцовую пластину толщиной 0.3 мм, слой сцинтилляционный волокон Ø 1 мм и аналогичный слой прозрачных пластиковых волокон. Таким образом волокна сгруппированы с сегментацией и в продольном, и поперечном направлениях.

Были смоделированы события с γ -квантами в диапазоне (0.125, 0.25, ..., 4) ГэВ и (0.5– 15) ГэВ для нейтронов. Найденное для γ энергетическое разрешение равно $5.5\%/\sqrt{E}$ по сцинтилляционному сигналу и $7.6\%/\sqrt{E}$ по черенковскому. Эти данные хорошо согласуются с данными для аналогичных калориметрических структур (см., напр., [10]).

Черенковский E_{ch} и сцинтилляционный E_{sc} сигналы нормированы по ливням от γ квантов, давая таким образом для отношения $R = E_{ch}/E_{sc}$ среднее R = 1. Распределение R имеет гауссовскую форму с параметром $\sigma_R = 8.1\%/\sqrt{E[\Gamma \Rightarrow B]} \oplus 2.8\%$. Отличия в поведении отношения R для γ -квантов и нейтронов, показывающие подавление черенковского сигнала в адронных ливнях, изображены на рис. 4. Для режекции γ/n разработан алгоритм, представляющий собой упрощенную реализацию доступных критериев отбора:

- критерий начала ливня, отбирающий ливни, начинающиеся в первых ячейках (~ 3X₀) калориметра как электромагнитные;
- критерий по отношению R: идентификация ливней с R в пределах 1 ± C(E_{sc}) · *σ_R(E_{sc})* как электромагнитных, где C(E) выбрана в зависимости от требуемой эффективности регистрации для каждого E;
- критерий формы ливня и плотности сигнала, в данном случае количество ячеек *N* с энерговыделением выше порога должно удовлетворять условию *N* > const.

В табл. 2 представлены неэффективности регистрации отдельного фотона и фотона при наличии ливня от 1 нейтрона, смоделированного с учетом известного спектра пучка. Для этого алгоритма эффективность неправильной идентификации нейтронов как γ равна 35% с учетом спектра пучка. Поскольку естественно ожидать существенное улучшение результатов при полном использовании информации о продольном и поперечном развитии ливня, эти исследования дают надежду решить проблему идентификации потерянных γ-квантов с небольшой (≤ 0.1) потерей аксептанса установки.

4.2. Прототип пучкового вето-калориметра

На основе результатов моделирования спроектирован и произведен прототип ПВК (см. рис. 5). Конструкция произведенного калориметра подобна описанной в пред. пункте, но содержит только 100 одинаковых слоев (0.3 мм свинца и 1 мм пластиковых волокон и сцинтилляционной пластины 1.5 мм), расположенных вдоль линии пучка. (Вместо сцинтилляционных волокон используется пластина). Сцинтилляционный свет считывается спектросмещающими волокнами, проложенными в канавке в центре каждой пластины. Пластиковые волокна с 20 слоев в продольном направлении и 17 волокон в поперечном направлении собираются в пучки ~ \emptyset 20 мм, считываемые ФЭУ; аналогично, спектросмещающие волокна с каждой пластины из 20 слоев в продольном направлении 25 ячеек, сгруппированных в матрицу 5 × 5, считываемых всего 50 ФЭУ. Размер протоипа $1 R_M × 2 R_M × 7.5 X_0$ (в параметрах электромагнитных ливней). Прототип ПВК протестирован на вторичных пучках ускорительного комлекса У-70. Целью измерений было измерить основные характеристики устройства, такие, как световыход, однородность, угловая зависимость световыхода и т.д. Основные результаты этих тестов:

- измеренная однородность отклика устройства лучше ±5% в обоих поперечных к линии пучка направлениях;
- черенковский световыход от одной ячейки (20 слоев) при угле 45° составил 10 фотоэлектронов на минимально ионизирующую частицу;
- сцинтилляционный световыход превышает черенковский в ~ 5 -10 раз;
- как ожидается на основании данных моделирования, измеренный максимум черенковского световыхода достигается при угле 45°. Зависимость световыхода от угла соответствует числовой аппертуре использованных пластиковых волокон;
- отсутствует угловая зависимость полного сцинтилляционного световыхода.

Результаты этих измерений будут использованы в нормировке параметров моделирования Монте-Карло и, возможно, внесения изменений в конструкция окончательного варианта ПВК. Для доказательства того, что предложенный детектор способен удовлетворить требованиям эксперимента, прототип будет протестирован в сеансах 2009– 2010 гг. на пучке вторичных частиц с возможностью идентификации типа частицы (K^+, e^+, π^+) .

5. ЗАКЛЮЧЕНИЕ

В этой работе показана возможность создания двух основных детекторов с требуемыми для осуществления эксперимента KLOD характеристиками. В частности, продемонстрирована плодотворность использования идеи двойного светосбора для детектора, работающего в сложных фоновых условиях. Работа не охватывает всей деятельности коллаборации: прежде всего, опущены работы по проектированию и моделированию главного калориметра, выполненные группой ОИЯИ.

Авторы выражают признательность всем членам коллаборации за помощь и обсуждение данной работы. Работа поддержана грантами РФФИ №№06-02-16065, 08-02-00808.

- 1. L. Littenberg, Phys. Rev. **D39**, 3322 (1989).
- 2. KAMI Collaboration. A proposal for a Precision Measurement of the Decay $K_L^0 \to \pi^0 \nu \overline{\nu}$ and Other Rare Processes at Fermilab Using the Main Injector — KAMI. http://ktev.fnal.gov/ public/kami/kami.html (2001)
- T. Inagaki *et al.*, KEK-E391 Proposal 1996, KEK-Internal 96-13 (1996); K. Abe *et al.*, KEK Preprint 2000-89 (2000).
- 4. Proposal for $K_L^0 \to \pi^0 \nu \overline{\nu}$ Experiment at J-Parc, http://j-parc.jp/NuclPart/Proposal_0606_e.html (2006).
- 5. Г. И. Бритвич и др., Препринт №2007-08, ИФВЭ (Протвино, 2007).
- 6. Ф.Н. Новоскольцев, А.П. Останков, Препринт №2004-52, ИФВЭ (Протвино, 2004).
- 7. G. S. Atoian et al., Nucl. Instr. And Meth. A531, 467 (2004).
- 8. N. Akchurin et al., Nucl. Instr. And Meth. A399, 202 (1997).
- 9. N. Akchurin et al., Nucl. Instr. And Meth. A536, 29 (2005); A548, 336 (2005).
- 10. D. Babusci et al., Nucl. Instr. And Meth. A332, 444 (1993).

KLOD experiment development and detector prototype testing

V. Bolotov,¹ G. Britvich,² I. Gouz,² A. Makarov,^{1,*} A. Ostankov²

¹ Institute for Nuclear Research of RAS
 ² State Research Center "Institute of High Energy Physics"
 * E-mail: makarov@meson1.inr.ac.ru

KLOD experimental setup is intended to find and study ultra-rare decay $K_L^0 \to \pi^0 \nu \overline{\nu}$. Its probability, calculated by the Standard Model, is $Br = (3.0 \pm 0.6) \times 10^{-11}$. Research and development of the setup and its detectors, especially, modules of main veto-system and inbeam-veto calorimeter are overviewed in this paper. The ability of in-beam-veto calorimeter to fulfil our requirements on high γ detection efficiency in the presence of 300 MHz neutron flux is shown.

				1	1	
	KOPIO	KAMI	E391A	J-Parc (1)	J-Parc (2)	KLOD
Телесный угол пучка	500 <i>µ</i> стер	0.41 <i>µ</i> стер	12.6 <i>µ</i> стер	9 μ стер	$2 \ \mu$ стер	12.6 <i>µ</i> стер
$ig K_L^0/$ сброс (на установке)	$2.6 \cdot 10^{8}$	$6.2\cdot 10^7$	$3.3\cdot 10^5$	$8.1 \cdot 10^6$	$4.4 \cdot 10^{7}$	$5.4\cdot 10^7$
Вероятность распада	$\approx 16 \ (8)\%$	15~%	2.7~%	3.6 %	6%	4.8%
Время набора	$3 \cdot 10^7$ сек	$2 \cdot 10^7$ сек	6 месяцев	$3 \cdot 10^7$ сек	$3 \cdot 10^7$ сек	100 дней
Число событий (по СМ)	96	88	0	3.5	133	11
Сигнал/фон	2	4.6	0	1.4	4.8	3

Таблица 1. Сравнение эксперимента KLOD с другими проектами

	0.125 ГэВ	0.25 ГэВ	0.5 ГэВ	1 ГэВ	2,4,8 ГэВ
неэффективность	0.29	$1.4\cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	$6 \cdot 10^{-4}$	0
~в присутствии 1n	0.23	$3.7\cdot 10^{-2}$	$1.2\cdot 10^{-2}$	$1.7 \cdot 10^{-3}$	0

Таблица 2. Неэффективность регистрации ПВК γ -квантов различных энергий.

Рис. 1. Схема установки КLOD

Рис. 2. Схема и фотографии произведенных модулей вето-системы распадного объема

Рис. 3. Спектры γ -квантов распада $K_L^0 \to \pi^0 \nu \overline{\nu}$ при условии, что 2 γ попали в главный калориметр: а) γ , попавший в распадную вето-систему (1), в отверстие главного калориметра (2), в ПВК (3); b) в случае 2 γ в ПВК: энергия каждого γ (1) и их сумма (2), (3-4) — то же при условии, что 2γ от 1 π^0 .

Рис. 4. Корреляции между $R = E_{ch}/E_{sc}$ (ось X) и зарегистрированным сцинтилляционным сигналом E_{sc} (ось Y) для а) γ -квантов и b) нейтронов. Не показаны R < 0.1.

Рис. 5. а) Схема слоя ПВК (слева направо: свинцовая пластина, ряд пластиковых волокон, сцинтилляционная пластина со спектросмещающим волокном); фотографии b) ячейки, состоящей из 20-ти таких слоев и c) всего прототипа 5 × 5 ячеек.